| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 0 | 
							
								
							 | 
							vk | 
							 |-  k  | 
						
						
							| 1 | 
							
								
							 | 
							cA | 
							 |-  A  | 
						
						
							| 2 | 
							
								
							 | 
							cB | 
							 |-  B  | 
						
						
							| 3 | 
							
								1 2 0
							 | 
							csu | 
							 |-  sum_ k e. A B  | 
						
						
							| 4 | 
							
								
							 | 
							vx | 
							 |-  x  | 
						
						
							| 5 | 
							
								
							 | 
							vm | 
							 |-  m  | 
						
						
							| 6 | 
							
								
							 | 
							cz | 
							 |-  ZZ  | 
						
						
							| 7 | 
							
								
							 | 
							cuz | 
							 |-  ZZ>=  | 
						
						
							| 8 | 
							
								5
							 | 
							cv | 
							 |-  m  | 
						
						
							| 9 | 
							
								8 7
							 | 
							cfv | 
							 |-  ( ZZ>= ` m )  | 
						
						
							| 10 | 
							
								1 9
							 | 
							wss | 
							 |-  A C_ ( ZZ>= ` m )  | 
						
						
							| 11 | 
							
								
							 | 
							caddc | 
							 |-  +  | 
						
						
							| 12 | 
							
								
							 | 
							vn | 
							 |-  n  | 
						
						
							| 13 | 
							
								12
							 | 
							cv | 
							 |-  n  | 
						
						
							| 14 | 
							
								13 1
							 | 
							wcel | 
							 |-  n e. A  | 
						
						
							| 15 | 
							
								0 13 2
							 | 
							csb | 
							 |-  [_ n / k ]_ B  | 
						
						
							| 16 | 
							
								
							 | 
							cc0 | 
							 |-  0  | 
						
						
							| 17 | 
							
								14 15 16
							 | 
							cif | 
							 |-  if ( n e. A , [_ n / k ]_ B , 0 )  | 
						
						
							| 18 | 
							
								12 6 17
							 | 
							cmpt | 
							 |-  ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) )  | 
						
						
							| 19 | 
							
								11 18 8
							 | 
							cseq | 
							 |-  seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) )  | 
						
						
							| 20 | 
							
								
							 | 
							cli | 
							 |-  ~~>  | 
						
						
							| 21 | 
							
								4
							 | 
							cv | 
							 |-  x  | 
						
						
							| 22 | 
							
								19 21 20
							 | 
							wbr | 
							 |-  seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x  | 
						
						
							| 23 | 
							
								10 22
							 | 
							wa | 
							 |-  ( A C_ ( ZZ>= ` m ) /\ seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x )  | 
						
						
							| 24 | 
							
								23 5 6
							 | 
							wrex | 
							 |-  E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x )  | 
						
						
							| 25 | 
							
								
							 | 
							cn | 
							 |-  NN  | 
						
						
							| 26 | 
							
								
							 | 
							vf | 
							 |-  f  | 
						
						
							| 27 | 
							
								26
							 | 
							cv | 
							 |-  f  | 
						
						
							| 28 | 
							
								
							 | 
							c1 | 
							 |-  1  | 
						
						
							| 29 | 
							
								
							 | 
							cfz | 
							 |-  ...  | 
						
						
							| 30 | 
							
								28 8 29
							 | 
							co | 
							 |-  ( 1 ... m )  | 
						
						
							| 31 | 
							
								30 1 27
							 | 
							wf1o | 
							 |-  f : ( 1 ... m ) -1-1-onto-> A  | 
						
						
							| 32 | 
							
								13 27
							 | 
							cfv | 
							 |-  ( f ` n )  | 
						
						
							| 33 | 
							
								0 32 2
							 | 
							csb | 
							 |-  [_ ( f ` n ) / k ]_ B  | 
						
						
							| 34 | 
							
								12 25 33
							 | 
							cmpt | 
							 |-  ( n e. NN |-> [_ ( f ` n ) / k ]_ B )  | 
						
						
							| 35 | 
							
								11 34 28
							 | 
							cseq | 
							 |-  seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) )  | 
						
						
							| 36 | 
							
								8 35
							 | 
							cfv | 
							 |-  ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m )  | 
						
						
							| 37 | 
							
								21 36
							 | 
							wceq | 
							 |-  x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m )  | 
						
						
							| 38 | 
							
								31 37
							 | 
							wa | 
							 |-  ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) )  | 
						
						
							| 39 | 
							
								38 26
							 | 
							wex | 
							 |-  E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) )  | 
						
						
							| 40 | 
							
								39 5 25
							 | 
							wrex | 
							 |-  E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) )  | 
						
						
							| 41 | 
							
								24 40
							 | 
							wo | 
							 |-  ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) )  | 
						
						
							| 42 | 
							
								41 4
							 | 
							cio | 
							 |-  ( iota x ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) ) )  | 
						
						
							| 43 | 
							
								3 42
							 | 
							wceq | 
							 |-  sum_ k e. A B = ( iota x ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) ) )  |