Step |
Hyp |
Ref |
Expression |
1 |
|
seqfeq.1 |
|- ( ph -> M e. ZZ ) |
2 |
|
seqfeq.2 |
|- ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( F ` k ) = ( G ` k ) ) |
3 |
|
seqfn |
|- ( M e. ZZ -> seq M ( .+ , F ) Fn ( ZZ>= ` M ) ) |
4 |
1 3
|
syl |
|- ( ph -> seq M ( .+ , F ) Fn ( ZZ>= ` M ) ) |
5 |
|
seqfn |
|- ( M e. ZZ -> seq M ( .+ , G ) Fn ( ZZ>= ` M ) ) |
6 |
1 5
|
syl |
|- ( ph -> seq M ( .+ , G ) Fn ( ZZ>= ` M ) ) |
7 |
|
simpr |
|- ( ( ph /\ x e. ( ZZ>= ` M ) ) -> x e. ( ZZ>= ` M ) ) |
8 |
|
elfzuz |
|- ( k e. ( M ... x ) -> k e. ( ZZ>= ` M ) ) |
9 |
8 2
|
sylan2 |
|- ( ( ph /\ k e. ( M ... x ) ) -> ( F ` k ) = ( G ` k ) ) |
10 |
9
|
adantlr |
|- ( ( ( ph /\ x e. ( ZZ>= ` M ) ) /\ k e. ( M ... x ) ) -> ( F ` k ) = ( G ` k ) ) |
11 |
7 10
|
seqfveq |
|- ( ( ph /\ x e. ( ZZ>= ` M ) ) -> ( seq M ( .+ , F ) ` x ) = ( seq M ( .+ , G ) ` x ) ) |
12 |
4 6 11
|
eqfnfvd |
|- ( ph -> seq M ( .+ , F ) = seq M ( .+ , G ) ) |