Description: Deduction for equality of functions. (Contributed by Mario Carneiro, 24-Jul-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | eqfnfvd.1 | |- ( ph -> F Fn A ) |
|
eqfnfvd.2 | |- ( ph -> G Fn A ) |
||
eqfnfvd.3 | |- ( ( ph /\ x e. A ) -> ( F ` x ) = ( G ` x ) ) |
||
Assertion | eqfnfvd | |- ( ph -> F = G ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqfnfvd.1 | |- ( ph -> F Fn A ) |
|
2 | eqfnfvd.2 | |- ( ph -> G Fn A ) |
|
3 | eqfnfvd.3 | |- ( ( ph /\ x e. A ) -> ( F ` x ) = ( G ` x ) ) |
|
4 | 3 | ralrimiva | |- ( ph -> A. x e. A ( F ` x ) = ( G ` x ) ) |
5 | eqfnfv | |- ( ( F Fn A /\ G Fn A ) -> ( F = G <-> A. x e. A ( F ` x ) = ( G ` x ) ) ) |
|
6 | 1 2 5 | syl2anc | |- ( ph -> ( F = G <-> A. x e. A ( F ` x ) = ( G ` x ) ) ) |
7 | 4 6 | mpbird | |- ( ph -> F = G ) |