Step |
Hyp |
Ref |
Expression |
1 |
|
seqfeq.1 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
2 |
|
seqfeq.2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑘 ) ) |
3 |
|
seqfn |
⊢ ( 𝑀 ∈ ℤ → seq 𝑀 ( + , 𝐹 ) Fn ( ℤ≥ ‘ 𝑀 ) ) |
4 |
1 3
|
syl |
⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) Fn ( ℤ≥ ‘ 𝑀 ) ) |
5 |
|
seqfn |
⊢ ( 𝑀 ∈ ℤ → seq 𝑀 ( + , 𝐺 ) Fn ( ℤ≥ ‘ 𝑀 ) ) |
6 |
1 5
|
syl |
⊢ ( 𝜑 → seq 𝑀 ( + , 𝐺 ) Fn ( ℤ≥ ‘ 𝑀 ) ) |
7 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑥 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
8 |
|
elfzuz |
⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑥 ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
9 |
8 2
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑥 ) ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑘 ) ) |
10 |
9
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑥 ) ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑘 ) ) |
11 |
7 10
|
seqfveq |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) = ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑥 ) ) |
12 |
4 6 11
|
eqfnfvd |
⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) = seq 𝑀 ( + , 𝐺 ) ) |