Metamath Proof Explorer


Theorem mp2

Description: A double modus ponens inference. (Contributed by NM, 5-Apr-1994)

Ref Expression
Hypotheses mp2.1
|- ph
mp2.2
|- ps
mp2.3
|- ( ph -> ( ps -> ch ) )
Assertion mp2
|- ch

Proof

Step Hyp Ref Expression
1 mp2.1
 |-  ph
2 mp2.2
 |-  ps
3 mp2.3
 |-  ( ph -> ( ps -> ch ) )
4 1 3 ax-mp
 |-  ( ps -> ch )
5 2 4 ax-mp
 |-  ch