| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isumclim3.1 |
|- Z = ( ZZ>= ` M ) |
| 2 |
|
isumclim3.2 |
|- ( ph -> M e. ZZ ) |
| 3 |
|
isumclim3.3 |
|- ( ph -> F e. dom ~~> ) |
| 4 |
|
isumclim3.4 |
|- ( ( ph /\ k e. Z ) -> A e. CC ) |
| 5 |
|
isumclim3.5 |
|- ( ( ph /\ j e. Z ) -> ( F ` j ) = sum_ k e. ( M ... j ) A ) |
| 6 |
|
climdm |
|- ( F e. dom ~~> <-> F ~~> ( ~~> ` F ) ) |
| 7 |
3 6
|
sylib |
|- ( ph -> F ~~> ( ~~> ` F ) ) |
| 8 |
|
sumfc |
|- sum_ m e. Z ( ( k e. Z |-> A ) ` m ) = sum_ k e. Z A |
| 9 |
|
eqidd |
|- ( ( ph /\ m e. Z ) -> ( ( k e. Z |-> A ) ` m ) = ( ( k e. Z |-> A ) ` m ) ) |
| 10 |
4
|
fmpttd |
|- ( ph -> ( k e. Z |-> A ) : Z --> CC ) |
| 11 |
10
|
ffvelcdmda |
|- ( ( ph /\ m e. Z ) -> ( ( k e. Z |-> A ) ` m ) e. CC ) |
| 12 |
1 2 9 11
|
isum |
|- ( ph -> sum_ m e. Z ( ( k e. Z |-> A ) ` m ) = ( ~~> ` seq M ( + , ( k e. Z |-> A ) ) ) ) |
| 13 |
8 12
|
eqtr3id |
|- ( ph -> sum_ k e. Z A = ( ~~> ` seq M ( + , ( k e. Z |-> A ) ) ) ) |
| 14 |
|
seqex |
|- seq M ( + , ( k e. Z |-> A ) ) e. _V |
| 15 |
14
|
a1i |
|- ( ph -> seq M ( + , ( k e. Z |-> A ) ) e. _V ) |
| 16 |
|
fvres |
|- ( m e. ( M ... j ) -> ( ( ( k e. Z |-> A ) |` ( M ... j ) ) ` m ) = ( ( k e. Z |-> A ) ` m ) ) |
| 17 |
|
fzssuz |
|- ( M ... j ) C_ ( ZZ>= ` M ) |
| 18 |
17 1
|
sseqtrri |
|- ( M ... j ) C_ Z |
| 19 |
|
resmpt |
|- ( ( M ... j ) C_ Z -> ( ( k e. Z |-> A ) |` ( M ... j ) ) = ( k e. ( M ... j ) |-> A ) ) |
| 20 |
18 19
|
ax-mp |
|- ( ( k e. Z |-> A ) |` ( M ... j ) ) = ( k e. ( M ... j ) |-> A ) |
| 21 |
20
|
fveq1i |
|- ( ( ( k e. Z |-> A ) |` ( M ... j ) ) ` m ) = ( ( k e. ( M ... j ) |-> A ) ` m ) |
| 22 |
16 21
|
eqtr3di |
|- ( m e. ( M ... j ) -> ( ( k e. Z |-> A ) ` m ) = ( ( k e. ( M ... j ) |-> A ) ` m ) ) |
| 23 |
22
|
sumeq2i |
|- sum_ m e. ( M ... j ) ( ( k e. Z |-> A ) ` m ) = sum_ m e. ( M ... j ) ( ( k e. ( M ... j ) |-> A ) ` m ) |
| 24 |
|
sumfc |
|- sum_ m e. ( M ... j ) ( ( k e. ( M ... j ) |-> A ) ` m ) = sum_ k e. ( M ... j ) A |
| 25 |
23 24
|
eqtri |
|- sum_ m e. ( M ... j ) ( ( k e. Z |-> A ) ` m ) = sum_ k e. ( M ... j ) A |
| 26 |
|
eqidd |
|- ( ( ( ph /\ j e. Z ) /\ m e. ( M ... j ) ) -> ( ( k e. Z |-> A ) ` m ) = ( ( k e. Z |-> A ) ` m ) ) |
| 27 |
|
simpr |
|- ( ( ph /\ j e. Z ) -> j e. Z ) |
| 28 |
27 1
|
eleqtrdi |
|- ( ( ph /\ j e. Z ) -> j e. ( ZZ>= ` M ) ) |
| 29 |
|
simpl |
|- ( ( ph /\ j e. Z ) -> ph ) |
| 30 |
|
elfzuz |
|- ( m e. ( M ... j ) -> m e. ( ZZ>= ` M ) ) |
| 31 |
30 1
|
eleqtrrdi |
|- ( m e. ( M ... j ) -> m e. Z ) |
| 32 |
29 31 11
|
syl2an |
|- ( ( ( ph /\ j e. Z ) /\ m e. ( M ... j ) ) -> ( ( k e. Z |-> A ) ` m ) e. CC ) |
| 33 |
26 28 32
|
fsumser |
|- ( ( ph /\ j e. Z ) -> sum_ m e. ( M ... j ) ( ( k e. Z |-> A ) ` m ) = ( seq M ( + , ( k e. Z |-> A ) ) ` j ) ) |
| 34 |
25 33
|
eqtr3id |
|- ( ( ph /\ j e. Z ) -> sum_ k e. ( M ... j ) A = ( seq M ( + , ( k e. Z |-> A ) ) ` j ) ) |
| 35 |
5 34
|
eqtr2d |
|- ( ( ph /\ j e. Z ) -> ( seq M ( + , ( k e. Z |-> A ) ) ` j ) = ( F ` j ) ) |
| 36 |
1 15 3 2 35
|
climeq |
|- ( ph -> ( seq M ( + , ( k e. Z |-> A ) ) ~~> x <-> F ~~> x ) ) |
| 37 |
36
|
iotabidv |
|- ( ph -> ( iota x seq M ( + , ( k e. Z |-> A ) ) ~~> x ) = ( iota x F ~~> x ) ) |
| 38 |
|
df-fv |
|- ( ~~> ` seq M ( + , ( k e. Z |-> A ) ) ) = ( iota x seq M ( + , ( k e. Z |-> A ) ) ~~> x ) |
| 39 |
|
df-fv |
|- ( ~~> ` F ) = ( iota x F ~~> x ) |
| 40 |
37 38 39
|
3eqtr4g |
|- ( ph -> ( ~~> ` seq M ( + , ( k e. Z |-> A ) ) ) = ( ~~> ` F ) ) |
| 41 |
13 40
|
eqtrd |
|- ( ph -> sum_ k e. Z A = ( ~~> ` F ) ) |
| 42 |
7 41
|
breqtrrd |
|- ( ph -> F ~~> sum_ k e. Z A ) |