| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isumclim3.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
| 2 |
|
isumclim3.2 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 3 |
|
isumclim3.3 |
⊢ ( 𝜑 → 𝐹 ∈ dom ⇝ ) |
| 4 |
|
isumclim3.4 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐴 ∈ ℂ ) |
| 5 |
|
isumclim3.5 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑗 ) = Σ 𝑘 ∈ ( 𝑀 ... 𝑗 ) 𝐴 ) |
| 6 |
|
climdm |
⊢ ( 𝐹 ∈ dom ⇝ ↔ 𝐹 ⇝ ( ⇝ ‘ 𝐹 ) ) |
| 7 |
3 6
|
sylib |
⊢ ( 𝜑 → 𝐹 ⇝ ( ⇝ ‘ 𝐹 ) ) |
| 8 |
|
sumfc |
⊢ Σ 𝑚 ∈ 𝑍 ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) = Σ 𝑘 ∈ 𝑍 𝐴 |
| 9 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) = ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) |
| 10 |
4
|
fmpttd |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) : 𝑍 ⟶ ℂ ) |
| 11 |
10
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ∈ ℂ ) |
| 12 |
1 2 9 11
|
isum |
⊢ ( 𝜑 → Σ 𝑚 ∈ 𝑍 ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) = ( ⇝ ‘ seq 𝑀 ( + , ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ) ) ) |
| 13 |
8 12
|
eqtr3id |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝑍 𝐴 = ( ⇝ ‘ seq 𝑀 ( + , ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ) ) ) |
| 14 |
|
seqex |
⊢ seq 𝑀 ( + , ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ) ∈ V |
| 15 |
14
|
a1i |
⊢ ( 𝜑 → seq 𝑀 ( + , ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ) ∈ V ) |
| 16 |
|
fvres |
⊢ ( 𝑚 ∈ ( 𝑀 ... 𝑗 ) → ( ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ↾ ( 𝑀 ... 𝑗 ) ) ‘ 𝑚 ) = ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) |
| 17 |
|
fzssuz |
⊢ ( 𝑀 ... 𝑗 ) ⊆ ( ℤ≥ ‘ 𝑀 ) |
| 18 |
17 1
|
sseqtrri |
⊢ ( 𝑀 ... 𝑗 ) ⊆ 𝑍 |
| 19 |
|
resmpt |
⊢ ( ( 𝑀 ... 𝑗 ) ⊆ 𝑍 → ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ↾ ( 𝑀 ... 𝑗 ) ) = ( 𝑘 ∈ ( 𝑀 ... 𝑗 ) ↦ 𝐴 ) ) |
| 20 |
18 19
|
ax-mp |
⊢ ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ↾ ( 𝑀 ... 𝑗 ) ) = ( 𝑘 ∈ ( 𝑀 ... 𝑗 ) ↦ 𝐴 ) |
| 21 |
20
|
fveq1i |
⊢ ( ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ↾ ( 𝑀 ... 𝑗 ) ) ‘ 𝑚 ) = ( ( 𝑘 ∈ ( 𝑀 ... 𝑗 ) ↦ 𝐴 ) ‘ 𝑚 ) |
| 22 |
16 21
|
eqtr3di |
⊢ ( 𝑚 ∈ ( 𝑀 ... 𝑗 ) → ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) = ( ( 𝑘 ∈ ( 𝑀 ... 𝑗 ) ↦ 𝐴 ) ‘ 𝑚 ) ) |
| 23 |
22
|
sumeq2i |
⊢ Σ 𝑚 ∈ ( 𝑀 ... 𝑗 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) = Σ 𝑚 ∈ ( 𝑀 ... 𝑗 ) ( ( 𝑘 ∈ ( 𝑀 ... 𝑗 ) ↦ 𝐴 ) ‘ 𝑚 ) |
| 24 |
|
sumfc |
⊢ Σ 𝑚 ∈ ( 𝑀 ... 𝑗 ) ( ( 𝑘 ∈ ( 𝑀 ... 𝑗 ) ↦ 𝐴 ) ‘ 𝑚 ) = Σ 𝑘 ∈ ( 𝑀 ... 𝑗 ) 𝐴 |
| 25 |
23 24
|
eqtri |
⊢ Σ 𝑚 ∈ ( 𝑀 ... 𝑗 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) = Σ 𝑘 ∈ ( 𝑀 ... 𝑗 ) 𝐴 |
| 26 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑚 ∈ ( 𝑀 ... 𝑗 ) ) → ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) = ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) |
| 27 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → 𝑗 ∈ 𝑍 ) |
| 28 |
27 1
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 29 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → 𝜑 ) |
| 30 |
|
elfzuz |
⊢ ( 𝑚 ∈ ( 𝑀 ... 𝑗 ) → 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 31 |
30 1
|
eleqtrrdi |
⊢ ( 𝑚 ∈ ( 𝑀 ... 𝑗 ) → 𝑚 ∈ 𝑍 ) |
| 32 |
29 31 11
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑚 ∈ ( 𝑀 ... 𝑗 ) ) → ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ∈ ℂ ) |
| 33 |
26 28 32
|
fsumser |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → Σ 𝑚 ∈ ( 𝑀 ... 𝑗 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) = ( seq 𝑀 ( + , ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ) ‘ 𝑗 ) ) |
| 34 |
25 33
|
eqtr3id |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → Σ 𝑘 ∈ ( 𝑀 ... 𝑗 ) 𝐴 = ( seq 𝑀 ( + , ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ) ‘ 𝑗 ) ) |
| 35 |
5 34
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( seq 𝑀 ( + , ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ) ‘ 𝑗 ) = ( 𝐹 ‘ 𝑗 ) ) |
| 36 |
1 15 3 2 35
|
climeq |
⊢ ( 𝜑 → ( seq 𝑀 ( + , ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ) ⇝ 𝑥 ↔ 𝐹 ⇝ 𝑥 ) ) |
| 37 |
36
|
iotabidv |
⊢ ( 𝜑 → ( ℩ 𝑥 seq 𝑀 ( + , ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ) ⇝ 𝑥 ) = ( ℩ 𝑥 𝐹 ⇝ 𝑥 ) ) |
| 38 |
|
df-fv |
⊢ ( ⇝ ‘ seq 𝑀 ( + , ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ) ) = ( ℩ 𝑥 seq 𝑀 ( + , ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ) ⇝ 𝑥 ) |
| 39 |
|
df-fv |
⊢ ( ⇝ ‘ 𝐹 ) = ( ℩ 𝑥 𝐹 ⇝ 𝑥 ) |
| 40 |
37 38 39
|
3eqtr4g |
⊢ ( 𝜑 → ( ⇝ ‘ seq 𝑀 ( + , ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ) ) = ( ⇝ ‘ 𝐹 ) ) |
| 41 |
13 40
|
eqtrd |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝑍 𝐴 = ( ⇝ ‘ 𝐹 ) ) |
| 42 |
7 41
|
breqtrrd |
⊢ ( 𝜑 → 𝐹 ⇝ Σ 𝑘 ∈ 𝑍 𝐴 ) |