Metamath Proof Explorer


Theorem sseqtrri

Description: Substitution of equality into a subclass relationship. (Contributed by NM, 4-Apr-1995)

Ref Expression
Hypotheses sseqtrri.1 𝐴𝐵
sseqtrri.2 𝐶 = 𝐵
Assertion sseqtrri 𝐴𝐶

Proof

Step Hyp Ref Expression
1 sseqtrri.1 𝐴𝐵
2 sseqtrri.2 𝐶 = 𝐵
3 2 eqcomi 𝐵 = 𝐶
4 1 3 sseqtri 𝐴𝐶