Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Classes
Class equality
eqidd
Next ⟩
eqeq1d
Metamath Proof Explorer
Ascii
Structured
Theorem
eqidd
Description:
Class identity law with antecedent.
(Contributed by
NM
, 21-Aug-2008)
Ref
Expression
Assertion
eqidd
⊢
(
𝜑
→
𝐴
=
𝐴
)
Proof
Step
Hyp
Ref
Expression
1
eqid
⊢
𝐴
=
𝐴
2
1
a1i
⊢
(
𝜑
→
𝐴
=
𝐴
)