Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- ( k e. A |-> B ) = ( k e. A |-> B ) |
2 |
1
|
fvmpt2i |
|- ( k e. A -> ( ( k e. A |-> B ) ` k ) = ( _I ` B ) ) |
3 |
2
|
sumeq2i |
|- sum_ k e. A ( ( k e. A |-> B ) ` k ) = sum_ k e. A ( _I ` B ) |
4 |
|
nffvmpt1 |
|- F/_ k ( ( k e. A |-> B ) ` j ) |
5 |
|
nfcv |
|- F/_ j ( ( k e. A |-> B ) ` k ) |
6 |
|
fveq2 |
|- ( j = k -> ( ( k e. A |-> B ) ` j ) = ( ( k e. A |-> B ) ` k ) ) |
7 |
4 5 6
|
cbvsumi |
|- sum_ j e. A ( ( k e. A |-> B ) ` j ) = sum_ k e. A ( ( k e. A |-> B ) ` k ) |
8 |
|
sum2id |
|- sum_ k e. A B = sum_ k e. A ( _I ` B ) |
9 |
3 7 8
|
3eqtr4i |
|- sum_ j e. A ( ( k e. A |-> B ) ` j ) = sum_ k e. A B |