| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hashcl |
|- ( A e. Fin -> ( # ` A ) e. NN0 ) |
| 2 |
|
elnn0 |
|- ( ( # ` A ) e. NN0 <-> ( ( # ` A ) e. NN \/ ( # ` A ) = 0 ) ) |
| 3 |
1 2
|
sylib |
|- ( A e. Fin -> ( ( # ` A ) e. NN \/ ( # ` A ) = 0 ) ) |
| 4 |
3
|
orcomd |
|- ( A e. Fin -> ( ( # ` A ) = 0 \/ ( # ` A ) e. NN ) ) |
| 5 |
|
hasheq0 |
|- ( A e. Fin -> ( ( # ` A ) = 0 <-> A = (/) ) ) |
| 6 |
|
isfinite4 |
|- ( A e. Fin <-> ( 1 ... ( # ` A ) ) ~~ A ) |
| 7 |
|
bren |
|- ( ( 1 ... ( # ` A ) ) ~~ A <-> E. f f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) |
| 8 |
6 7
|
sylbb |
|- ( A e. Fin -> E. f f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) |
| 9 |
8
|
biantrud |
|- ( A e. Fin -> ( ( # ` A ) e. NN <-> ( ( # ` A ) e. NN /\ E. f f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) ) |
| 10 |
5 9
|
orbi12d |
|- ( A e. Fin -> ( ( ( # ` A ) = 0 \/ ( # ` A ) e. NN ) <-> ( A = (/) \/ ( ( # ` A ) e. NN /\ E. f f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) ) ) |
| 11 |
4 10
|
mpbid |
|- ( A e. Fin -> ( A = (/) \/ ( ( # ` A ) e. NN /\ E. f f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) ) |