Metamath Proof Explorer


Theorem climeq

Description: Two functions that are eventually equal to one another have the same limit. (Contributed by Mario Carneiro, 5-Nov-2013) (Revised by Mario Carneiro, 31-Jan-2014)

Ref Expression
Hypotheses climeq.1
|- Z = ( ZZ>= ` M )
climeq.2
|- ( ph -> F e. V )
climeq.3
|- ( ph -> G e. W )
climeq.5
|- ( ph -> M e. ZZ )
climeq.6
|- ( ( ph /\ k e. Z ) -> ( F ` k ) = ( G ` k ) )
Assertion climeq
|- ( ph -> ( F ~~> A <-> G ~~> A ) )

Proof

Step Hyp Ref Expression
1 climeq.1
 |-  Z = ( ZZ>= ` M )
2 climeq.2
 |-  ( ph -> F e. V )
3 climeq.3
 |-  ( ph -> G e. W )
4 climeq.5
 |-  ( ph -> M e. ZZ )
5 climeq.6
 |-  ( ( ph /\ k e. Z ) -> ( F ` k ) = ( G ` k ) )
6 1 4 2 5 clim2
 |-  ( ph -> ( F ~~> A <-> ( A e. CC /\ A. x e. RR+ E. y e. Z A. k e. ( ZZ>= ` y ) ( ( G ` k ) e. CC /\ ( abs ` ( ( G ` k ) - A ) ) < x ) ) ) )
7 eqidd
 |-  ( ( ph /\ k e. Z ) -> ( G ` k ) = ( G ` k ) )
8 1 4 3 7 clim2
 |-  ( ph -> ( G ~~> A <-> ( A e. CC /\ A. x e. RR+ E. y e. Z A. k e. ( ZZ>= ` y ) ( ( G ` k ) e. CC /\ ( abs ` ( ( G ` k ) - A ) ) < x ) ) ) )
9 6 8 bitr4d
 |-  ( ph -> ( F ~~> A <-> G ~~> A ) )