Metamath Proof Explorer


Theorem divcan2i

Description: A cancellation law for division. (Contributed by NM, 9-Feb-1995)

Ref Expression
Hypotheses divclz.1 A
divclz.2 B
divcl.3 B0
Assertion divcan2i BAB=A

Proof

Step Hyp Ref Expression
1 divclz.1 A
2 divclz.2 B
3 divcl.3 B0
4 1 2 divcan2zi B0BAB=A
5 3 4 ax-mp BAB=A