Metamath Proof Explorer


Theorem expne0d

Description: A nonnegative integer power is nonzero if its base is nonzero. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses expcld.1 φA
sqrecd.1 φA0
expclzd.3 φN
Assertion expne0d φAN0

Proof

Step Hyp Ref Expression
1 expcld.1 φA
2 sqrecd.1 φA0
3 expclzd.3 φN
4 expne0i AA0NAN0
5 1 2 3 4 syl3anc φAN0