Metamath Proof Explorer


Theorem oveq12i

Description: Equality inference for operation value. (Contributed by NM, 28-Feb-1995) (Proof shortened by Andrew Salmon, 22-Oct-2011)

Ref Expression
Hypotheses oveq1i.1 A=B
oveq12i.2 C=D
Assertion oveq12i AFC=BFD

Proof

Step Hyp Ref Expression
1 oveq1i.1 A=B
2 oveq12i.2 C=D
3 oveq12 A=BC=DAFC=BFD
4 1 2 3 mp2an AFC=BFD