Metamath Proof Explorer


Theorem summo

Description: A sum has at most one limit. (Contributed by Mario Carneiro, 3-Apr-2014) (Revised by Mario Carneiro, 23-Aug-2014)

Ref Expression
Hypotheses summo.1 F=kifkAB0
summo.2 φkAB
summo.3 G=nfn/kB
Assertion summo φ*xmAmseqm+Fxmff:1m1-1 ontoAx=seq1+Gm

Proof

Step Hyp Ref Expression
1 summo.1 F=kifkAB0
2 summo.2 φkAB
3 summo.3 G=nfn/kB
4 fveq2 m=nm=n
5 4 sseq2d m=nAmAn
6 seqeq1 m=nseqm+F=seqn+F
7 6 breq1d m=nseqm+Fyseqn+Fy
8 5 7 anbi12d m=nAmseqm+FyAnseqn+Fy
9 8 cbvrexvw mAmseqm+FynAnseqn+Fy
10 reeanv mnAmseqm+FxAnseqn+FymAmseqm+FxnAnseqn+Fy
11 simprlr φmnAmseqm+FxAnseqn+Fyseqm+Fx
12 2 ad4ant14 φmnAmseqm+FxAnseqn+FykAB
13 simplrl φmnAmseqm+FxAnseqn+Fym
14 simplrr φmnAmseqm+FxAnseqn+Fyn
15 simprll φmnAmseqm+FxAnseqn+FyAm
16 simprrl φmnAmseqm+FxAnseqn+FyAn
17 1 12 13 14 15 16 sumrb φmnAmseqm+FxAnseqn+Fyseqm+Fxseqn+Fx
18 11 17 mpbid φmnAmseqm+FxAnseqn+Fyseqn+Fx
19 simprrr φmnAmseqm+FxAnseqn+Fyseqn+Fy
20 climuni seqn+Fxseqn+Fyx=y
21 18 19 20 syl2anc φmnAmseqm+FxAnseqn+Fyx=y
22 21 exp31 φmnAmseqm+FxAnseqn+Fyx=y
23 22 rexlimdvv φmnAmseqm+FxAnseqn+Fyx=y
24 10 23 biimtrrid φmAmseqm+FxnAnseqn+Fyx=y
25 24 expdimp φmAmseqm+FxnAnseqn+Fyx=y
26 9 25 biimtrid φmAmseqm+FxmAmseqm+Fyx=y
27 1 2 3 summolem2 φmAmseqm+Fxmff:1m1-1 ontoAy=seq1+Gmx=y
28 26 27 jaod φmAmseqm+FxmAmseqm+Fymff:1m1-1 ontoAy=seq1+Gmx=y
29 1 2 3 summolem2 φmAmseqm+Fymff:1m1-1 ontoAx=seq1+Gmy=x
30 equcom y=xx=y
31 29 30 imbitrdi φmAmseqm+Fymff:1m1-1 ontoAx=seq1+Gmx=y
32 31 impancom φmff:1m1-1 ontoAx=seq1+GmmAmseqm+Fyx=y
33 oveq2 m=n1m=1n
34 33 f1oeq2d m=nf:1m1-1 ontoAf:1n1-1 ontoA
35 fveq2 m=nseq1+Gm=seq1+Gn
36 35 eqeq2d m=ny=seq1+Gmy=seq1+Gn
37 34 36 anbi12d m=nf:1m1-1 ontoAy=seq1+Gmf:1n1-1 ontoAy=seq1+Gn
38 37 exbidv m=nff:1m1-1 ontoAy=seq1+Gmff:1n1-1 ontoAy=seq1+Gn
39 f1oeq1 f=gf:1n1-1 ontoAg:1n1-1 ontoA
40 fveq1 f=gfn=gn
41 40 csbeq1d f=gfn/kB=gn/kB
42 41 mpteq2dv f=gnfn/kB=ngn/kB
43 3 42 eqtrid f=gG=ngn/kB
44 43 seqeq3d f=gseq1+G=seq1+ngn/kB
45 44 fveq1d f=gseq1+Gn=seq1+ngn/kBn
46 45 eqeq2d f=gy=seq1+Gny=seq1+ngn/kBn
47 39 46 anbi12d f=gf:1n1-1 ontoAy=seq1+Gng:1n1-1 ontoAy=seq1+ngn/kBn
48 47 cbvexvw ff:1n1-1 ontoAy=seq1+Gngg:1n1-1 ontoAy=seq1+ngn/kBn
49 38 48 bitrdi m=nff:1m1-1 ontoAy=seq1+Gmgg:1n1-1 ontoAy=seq1+ngn/kBn
50 49 cbvrexvw mff:1m1-1 ontoAy=seq1+Gmngg:1n1-1 ontoAy=seq1+ngn/kBn
51 reeanv mnff:1m1-1 ontoAx=seq1+Gmgg:1n1-1 ontoAy=seq1+ngn/kBnmff:1m1-1 ontoAx=seq1+Gmngg:1n1-1 ontoAy=seq1+ngn/kBn
52 exdistrv fgf:1m1-1 ontoAx=seq1+Gmg:1n1-1 ontoAy=seq1+ngn/kBnff:1m1-1 ontoAx=seq1+Gmgg:1n1-1 ontoAy=seq1+ngn/kBn
53 an4 f:1m1-1 ontoAx=seq1+Gmg:1n1-1 ontoAy=seq1+ngn/kBnf:1m1-1 ontoAg:1n1-1 ontoAx=seq1+Gmy=seq1+ngn/kBn
54 2 ad4ant14 φmnf:1m1-1 ontoAg:1n1-1 ontoAkAB
55 fveq2 n=jfn=fj
56 55 csbeq1d n=jfn/kB=fj/kB
57 56 cbvmptv nfn/kB=jfj/kB
58 3 57 eqtri G=jfj/kB
59 fveq2 n=jgn=gj
60 59 csbeq1d n=jgn/kB=gj/kB
61 60 cbvmptv ngn/kB=jgj/kB
62 simplr φmnf:1m1-1 ontoAg:1n1-1 ontoAmn
63 simprl φmnf:1m1-1 ontoAg:1n1-1 ontoAf:1m1-1 ontoA
64 simprr φmnf:1m1-1 ontoAg:1n1-1 ontoAg:1n1-1 ontoA
65 1 54 58 61 62 63 64 summolem3 φmnf:1m1-1 ontoAg:1n1-1 ontoAseq1+Gm=seq1+ngn/kBn
66 eqeq12 x=seq1+Gmy=seq1+ngn/kBnx=yseq1+Gm=seq1+ngn/kBn
67 65 66 syl5ibrcom φmnf:1m1-1 ontoAg:1n1-1 ontoAx=seq1+Gmy=seq1+ngn/kBnx=y
68 67 expimpd φmnf:1m1-1 ontoAg:1n1-1 ontoAx=seq1+Gmy=seq1+ngn/kBnx=y
69 53 68 biimtrid φmnf:1m1-1 ontoAx=seq1+Gmg:1n1-1 ontoAy=seq1+ngn/kBnx=y
70 69 exlimdvv φmnfgf:1m1-1 ontoAx=seq1+Gmg:1n1-1 ontoAy=seq1+ngn/kBnx=y
71 52 70 biimtrrid φmnff:1m1-1 ontoAx=seq1+Gmgg:1n1-1 ontoAy=seq1+ngn/kBnx=y
72 71 rexlimdvva φmnff:1m1-1 ontoAx=seq1+Gmgg:1n1-1 ontoAy=seq1+ngn/kBnx=y
73 51 72 biimtrrid φmff:1m1-1 ontoAx=seq1+Gmngg:1n1-1 ontoAy=seq1+ngn/kBnx=y
74 73 expdimp φmff:1m1-1 ontoAx=seq1+Gmngg:1n1-1 ontoAy=seq1+ngn/kBnx=y
75 50 74 biimtrid φmff:1m1-1 ontoAx=seq1+Gmmff:1m1-1 ontoAy=seq1+Gmx=y
76 32 75 jaod φmff:1m1-1 ontoAx=seq1+GmmAmseqm+Fymff:1m1-1 ontoAy=seq1+Gmx=y
77 28 76 jaodan φmAmseqm+Fxmff:1m1-1 ontoAx=seq1+GmmAmseqm+Fymff:1m1-1 ontoAy=seq1+Gmx=y
78 77 expimpd φmAmseqm+Fxmff:1m1-1 ontoAx=seq1+GmmAmseqm+Fymff:1m1-1 ontoAy=seq1+Gmx=y
79 78 alrimivv φxymAmseqm+Fxmff:1m1-1 ontoAx=seq1+GmmAmseqm+Fymff:1m1-1 ontoAy=seq1+Gmx=y
80 breq2 x=yseqm+Fxseqm+Fy
81 80 anbi2d x=yAmseqm+FxAmseqm+Fy
82 81 rexbidv x=ymAmseqm+FxmAmseqm+Fy
83 eqeq1 x=yx=seq1+Gmy=seq1+Gm
84 83 anbi2d x=yf:1m1-1 ontoAx=seq1+Gmf:1m1-1 ontoAy=seq1+Gm
85 84 exbidv x=yff:1m1-1 ontoAx=seq1+Gmff:1m1-1 ontoAy=seq1+Gm
86 85 rexbidv x=ymff:1m1-1 ontoAx=seq1+Gmmff:1m1-1 ontoAy=seq1+Gm
87 82 86 orbi12d x=ymAmseqm+Fxmff:1m1-1 ontoAx=seq1+GmmAmseqm+Fymff:1m1-1 ontoAy=seq1+Gm
88 87 mo4 *xmAmseqm+Fxmff:1m1-1 ontoAx=seq1+GmxymAmseqm+Fxmff:1m1-1 ontoAx=seq1+GmmAmseqm+Fymff:1m1-1 ontoAy=seq1+Gmx=y
89 79 88 sylibr φ*xmAmseqm+Fxmff:1m1-1 ontoAx=seq1+Gm