Metamath Proof Explorer


Theorem reeanv

Description: Rearrange restricted existential quantifiers. (Contributed by NM, 9-May-1999)

Ref Expression
Assertion reeanv x A y B φ ψ x A φ y B ψ

Proof

Step Hyp Ref Expression
1 exdistrv x y x A φ y B ψ x x A φ y y B ψ
2 1 reeanlem x A y B φ ψ x A φ y B ψ