Metamath Proof Explorer


Theorem reeanv

Description: Rearrange restricted existential quantifiers. (Contributed by NM, 9-May-1999)

Ref Expression
Assertion reeanv ( ∃ 𝑥𝐴𝑦𝐵 ( 𝜑𝜓 ) ↔ ( ∃ 𝑥𝐴 𝜑 ∧ ∃ 𝑦𝐵 𝜓 ) )

Proof

Step Hyp Ref Expression
1 exdistrv ( ∃ 𝑥𝑦 ( ( 𝑥𝐴𝜑 ) ∧ ( 𝑦𝐵𝜓 ) ) ↔ ( ∃ 𝑥 ( 𝑥𝐴𝜑 ) ∧ ∃ 𝑦 ( 𝑦𝐵𝜓 ) ) )
2 1 reeanlem ( ∃ 𝑥𝐴𝑦𝐵 ( 𝜑𝜓 ) ↔ ( ∃ 𝑥𝐴 𝜑 ∧ ∃ 𝑦𝐵 𝜓 ) )