Metamath Proof Explorer
Description: Rearrange restricted existential quantifiers. (Contributed by NM, 9-May-1999)
|
|
Ref |
Expression |
|
Assertion |
reeanv |
⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ( 𝜑 ∧ 𝜓 ) ↔ ( ∃ 𝑥 ∈ 𝐴 𝜑 ∧ ∃ 𝑦 ∈ 𝐵 𝜓 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
exdistrv |
⊢ ( ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜓 ) ) ↔ ( ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ ∃ 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝜓 ) ) ) |
2 |
1
|
reeanlem |
⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ( 𝜑 ∧ 𝜓 ) ↔ ( ∃ 𝑥 ∈ 𝐴 𝜑 ∧ ∃ 𝑦 ∈ 𝐵 𝜓 ) ) |