Metamath Proof Explorer


Theorem 3reeanv

Description: Rearrange three restricted existential quantifiers. (Contributed by Jeff Madsen, 11-Jun-2010)

Ref Expression
Assertion 3reeanv ( ∃ 𝑥𝐴𝑦𝐵𝑧𝐶 ( 𝜑𝜓𝜒 ) ↔ ( ∃ 𝑥𝐴 𝜑 ∧ ∃ 𝑦𝐵 𝜓 ∧ ∃ 𝑧𝐶 𝜒 ) )

Proof

Step Hyp Ref Expression
1 r19.41v ( ∃ 𝑥𝐴 ( ∃ 𝑦𝐵 ( 𝜑𝜓 ) ∧ ∃ 𝑧𝐶 𝜒 ) ↔ ( ∃ 𝑥𝐴𝑦𝐵 ( 𝜑𝜓 ) ∧ ∃ 𝑧𝐶 𝜒 ) )
2 reeanv ( ∃ 𝑥𝐴𝑦𝐵 ( 𝜑𝜓 ) ↔ ( ∃ 𝑥𝐴 𝜑 ∧ ∃ 𝑦𝐵 𝜓 ) )
3 2 anbi1i ( ( ∃ 𝑥𝐴𝑦𝐵 ( 𝜑𝜓 ) ∧ ∃ 𝑧𝐶 𝜒 ) ↔ ( ( ∃ 𝑥𝐴 𝜑 ∧ ∃ 𝑦𝐵 𝜓 ) ∧ ∃ 𝑧𝐶 𝜒 ) )
4 1 3 bitri ( ∃ 𝑥𝐴 ( ∃ 𝑦𝐵 ( 𝜑𝜓 ) ∧ ∃ 𝑧𝐶 𝜒 ) ↔ ( ( ∃ 𝑥𝐴 𝜑 ∧ ∃ 𝑦𝐵 𝜓 ) ∧ ∃ 𝑧𝐶 𝜒 ) )
5 df-3an ( ( 𝜑𝜓𝜒 ) ↔ ( ( 𝜑𝜓 ) ∧ 𝜒 ) )
6 5 2rexbii ( ∃ 𝑦𝐵𝑧𝐶 ( 𝜑𝜓𝜒 ) ↔ ∃ 𝑦𝐵𝑧𝐶 ( ( 𝜑𝜓 ) ∧ 𝜒 ) )
7 reeanv ( ∃ 𝑦𝐵𝑧𝐶 ( ( 𝜑𝜓 ) ∧ 𝜒 ) ↔ ( ∃ 𝑦𝐵 ( 𝜑𝜓 ) ∧ ∃ 𝑧𝐶 𝜒 ) )
8 6 7 bitri ( ∃ 𝑦𝐵𝑧𝐶 ( 𝜑𝜓𝜒 ) ↔ ( ∃ 𝑦𝐵 ( 𝜑𝜓 ) ∧ ∃ 𝑧𝐶 𝜒 ) )
9 8 rexbii ( ∃ 𝑥𝐴𝑦𝐵𝑧𝐶 ( 𝜑𝜓𝜒 ) ↔ ∃ 𝑥𝐴 ( ∃ 𝑦𝐵 ( 𝜑𝜓 ) ∧ ∃ 𝑧𝐶 𝜒 ) )
10 df-3an ( ( ∃ 𝑥𝐴 𝜑 ∧ ∃ 𝑦𝐵 𝜓 ∧ ∃ 𝑧𝐶 𝜒 ) ↔ ( ( ∃ 𝑥𝐴 𝜑 ∧ ∃ 𝑦𝐵 𝜓 ) ∧ ∃ 𝑧𝐶 𝜒 ) )
11 4 9 10 3bitr4i ( ∃ 𝑥𝐴𝑦𝐵𝑧𝐶 ( 𝜑𝜓𝜒 ) ↔ ( ∃ 𝑥𝐴 𝜑 ∧ ∃ 𝑦𝐵 𝜓 ∧ ∃ 𝑧𝐶 𝜒 ) )