Description: Distribute restricted universal quantification over "or". (Contributed by Jeff Madsen, 19-Jun-2010) (Proof shortened by Wolf Lammen, 20-Nov-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | 2ralor | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 ∨ 𝜓 ) ↔ ( ∀ 𝑥 ∈ 𝐴 𝜑 ∨ ∀ 𝑦 ∈ 𝐵 𝜓 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.32v | ⊢ ( ∀ 𝑦 ∈ 𝐵 ( 𝜑 ∨ 𝜓 ) ↔ ( 𝜑 ∨ ∀ 𝑦 ∈ 𝐵 𝜓 ) ) | |
2 | orcom | ⊢ ( ( 𝜑 ∨ ∀ 𝑦 ∈ 𝐵 𝜓 ) ↔ ( ∀ 𝑦 ∈ 𝐵 𝜓 ∨ 𝜑 ) ) | |
3 | 1 2 | bitri | ⊢ ( ∀ 𝑦 ∈ 𝐵 ( 𝜑 ∨ 𝜓 ) ↔ ( ∀ 𝑦 ∈ 𝐵 𝜓 ∨ 𝜑 ) ) |
4 | 3 | ralbii | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 ∨ 𝜓 ) ↔ ∀ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 𝜓 ∨ 𝜑 ) ) |
5 | r19.32v | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 𝜓 ∨ 𝜑 ) ↔ ( ∀ 𝑦 ∈ 𝐵 𝜓 ∨ ∀ 𝑥 ∈ 𝐴 𝜑 ) ) | |
6 | orcom | ⊢ ( ( ∀ 𝑦 ∈ 𝐵 𝜓 ∨ ∀ 𝑥 ∈ 𝐴 𝜑 ) ↔ ( ∀ 𝑥 ∈ 𝐴 𝜑 ∨ ∀ 𝑦 ∈ 𝐵 𝜓 ) ) | |
7 | 4 5 6 | 3bitri | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 ∨ 𝜓 ) ↔ ( ∀ 𝑥 ∈ 𝐴 𝜑 ∨ ∀ 𝑦 ∈ 𝐵 𝜓 ) ) |