| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rexnal | ⊢ ( ∃ 𝑥  ∈  𝐴 ¬  𝜑  ↔  ¬  ∀ 𝑥  ∈  𝐴 𝜑 ) | 
						
							| 2 |  | rexnal | ⊢ ( ∃ 𝑦  ∈  𝐵 ¬  𝜓  ↔  ¬  ∀ 𝑦  ∈  𝐵 𝜓 ) | 
						
							| 3 | 1 2 | anbi12i | ⊢ ( ( ∃ 𝑥  ∈  𝐴 ¬  𝜑  ∧  ∃ 𝑦  ∈  𝐵 ¬  𝜓 )  ↔  ( ¬  ∀ 𝑥  ∈  𝐴 𝜑  ∧  ¬  ∀ 𝑦  ∈  𝐵 𝜓 ) ) | 
						
							| 4 |  | ioran | ⊢ ( ¬  ( 𝜑  ∨  𝜓 )  ↔  ( ¬  𝜑  ∧  ¬  𝜓 ) ) | 
						
							| 5 | 4 | rexbii | ⊢ ( ∃ 𝑦  ∈  𝐵 ¬  ( 𝜑  ∨  𝜓 )  ↔  ∃ 𝑦  ∈  𝐵 ( ¬  𝜑  ∧  ¬  𝜓 ) ) | 
						
							| 6 |  | rexnal | ⊢ ( ∃ 𝑦  ∈  𝐵 ¬  ( 𝜑  ∨  𝜓 )  ↔  ¬  ∀ 𝑦  ∈  𝐵 ( 𝜑  ∨  𝜓 ) ) | 
						
							| 7 | 5 6 | bitr3i | ⊢ ( ∃ 𝑦  ∈  𝐵 ( ¬  𝜑  ∧  ¬  𝜓 )  ↔  ¬  ∀ 𝑦  ∈  𝐵 ( 𝜑  ∨  𝜓 ) ) | 
						
							| 8 | 7 | rexbii | ⊢ ( ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 ( ¬  𝜑  ∧  ¬  𝜓 )  ↔  ∃ 𝑥  ∈  𝐴 ¬  ∀ 𝑦  ∈  𝐵 ( 𝜑  ∨  𝜓 ) ) | 
						
							| 9 |  | reeanv | ⊢ ( ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 ( ¬  𝜑  ∧  ¬  𝜓 )  ↔  ( ∃ 𝑥  ∈  𝐴 ¬  𝜑  ∧  ∃ 𝑦  ∈  𝐵 ¬  𝜓 ) ) | 
						
							| 10 |  | rexnal | ⊢ ( ∃ 𝑥  ∈  𝐴 ¬  ∀ 𝑦  ∈  𝐵 ( 𝜑  ∨  𝜓 )  ↔  ¬  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝜑  ∨  𝜓 ) ) | 
						
							| 11 | 8 9 10 | 3bitr3ri | ⊢ ( ¬  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝜑  ∨  𝜓 )  ↔  ( ∃ 𝑥  ∈  𝐴 ¬  𝜑  ∧  ∃ 𝑦  ∈  𝐵 ¬  𝜓 ) ) | 
						
							| 12 |  | ioran | ⊢ ( ¬  ( ∀ 𝑥  ∈  𝐴 𝜑  ∨  ∀ 𝑦  ∈  𝐵 𝜓 )  ↔  ( ¬  ∀ 𝑥  ∈  𝐴 𝜑  ∧  ¬  ∀ 𝑦  ∈  𝐵 𝜓 ) ) | 
						
							| 13 | 3 11 12 | 3bitr4i | ⊢ ( ¬  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝜑  ∨  𝜓 )  ↔  ¬  ( ∀ 𝑥  ∈  𝐴 𝜑  ∨  ∀ 𝑦  ∈  𝐵 𝜓 ) ) | 
						
							| 14 | 13 | con4bii | ⊢ ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝜑  ∨  𝜓 )  ↔  ( ∀ 𝑥  ∈  𝐴 𝜑  ∨  ∀ 𝑦  ∈  𝐵 𝜓 ) ) |