Metamath Proof Explorer


Theorem 2ralor

Description: Distribute restricted universal quantification over "or". (Contributed by Jeff Madsen, 19-Jun-2010) (Proof shortened by Wolf Lammen, 20-Nov-2024)

Ref Expression
Assertion 2ralor xAyBφψxAφyBψ

Proof

Step Hyp Ref Expression
1 r19.32v yBφψφyBψ
2 orcom φyBψyBψφ
3 1 2 bitri yBφψyBψφ
4 3 ralbii xAyBφψxAyBψφ
5 r19.32v xAyBψφyBψxAφ
6 orcom yBψxAφxAφyBψ
7 4 5 6 3bitri xAyBφψxAφyBψ