Metamath Proof Explorer


Theorem f1oeq2d

Description: Equality deduction for one-to-one onto functions. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypothesis f1oeq2d.1 φA=B
Assertion f1oeq2d φF:A1-1 ontoCF:B1-1 ontoC

Proof

Step Hyp Ref Expression
1 f1oeq2d.1 φA=B
2 f1oeq2 A=BF:A1-1 ontoCF:B1-1 ontoC
3 1 2 syl φF:A1-1 ontoCF:B1-1 ontoC