Metamath Proof Explorer


Theorem sumex

Description: A sum is a set. (Contributed by NM, 11-Dec-2005) (Revised by Mario Carneiro, 13-Jun-2019)

Ref Expression
Assertion sumex kABV

Proof

Step Hyp Ref Expression
1 df-sum kAB=ιx|mAmseqm+nifnAn/kB0xmff:1m1-1 ontoAx=seq1+nfn/kBm
2 iotaex ιx|mAmseqm+nifnAn/kB0xmff:1m1-1 ontoAx=seq1+nfn/kBmV
3 1 2 eqeltri kABV