Step |
Hyp |
Ref |
Expression |
1 |
|
coep.1 |
|- A e. _V |
2 |
|
coep.2 |
|- B e. _V |
3 |
|
vex |
|- x e. _V |
4 |
1 3
|
brcnv |
|- ( A `' _E x <-> x _E A ) |
5 |
1
|
epeli |
|- ( x _E A <-> x e. A ) |
6 |
4 5
|
bitri |
|- ( A `' _E x <-> x e. A ) |
7 |
6
|
anbi1i |
|- ( ( A `' _E x /\ x R B ) <-> ( x e. A /\ x R B ) ) |
8 |
7
|
exbii |
|- ( E. x ( A `' _E x /\ x R B ) <-> E. x ( x e. A /\ x R B ) ) |
9 |
1 2
|
brco |
|- ( A ( R o. `' _E ) B <-> E. x ( A `' _E x /\ x R B ) ) |
10 |
|
df-rex |
|- ( E. x e. A x R B <-> E. x ( x e. A /\ x R B ) ) |
11 |
8 9 10
|
3bitr4i |
|- ( A ( R o. `' _E ) B <-> E. x e. A x R B ) |