Description: Composition with the membership relation. (Contributed by Scott Fenton, 18-Feb-2013)
Ref | Expression | ||
---|---|---|---|
Hypotheses | coep.1 | |- A e. _V |
|
coep.2 | |- B e. _V |
||
Assertion | coep | |- ( A ( _E o. R ) B <-> E. x e. B A R x ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coep.1 | |- A e. _V |
|
2 | coep.2 | |- B e. _V |
|
3 | 2 | epeli | |- ( x _E B <-> x e. B ) |
4 | 3 | anbi1ci | |- ( ( A R x /\ x _E B ) <-> ( x e. B /\ A R x ) ) |
5 | 4 | exbii | |- ( E. x ( A R x /\ x _E B ) <-> E. x ( x e. B /\ A R x ) ) |
6 | 1 2 | brco | |- ( A ( _E o. R ) B <-> E. x ( A R x /\ x _E B ) ) |
7 | df-rex | |- ( E. x e. B A R x <-> E. x ( x e. B /\ A R x ) ) |
|
8 | 5 6 7 | 3bitr4i | |- ( A ( _E o. R ) B <-> E. x e. B A R x ) |