Metamath Proof Explorer


Theorem coep

Description: Composition with the membership relation. (Contributed by Scott Fenton, 18-Feb-2013)

Ref Expression
Hypotheses coep.1
|- A e. _V
coep.2
|- B e. _V
Assertion coep
|- ( A ( _E o. R ) B <-> E. x e. B A R x )

Proof

Step Hyp Ref Expression
1 coep.1
 |-  A e. _V
2 coep.2
 |-  B e. _V
3 2 epeli
 |-  ( x _E B <-> x e. B )
4 3 anbi1ci
 |-  ( ( A R x /\ x _E B ) <-> ( x e. B /\ A R x ) )
5 4 exbii
 |-  ( E. x ( A R x /\ x _E B ) <-> E. x ( x e. B /\ A R x ) )
6 1 2 brco
 |-  ( A ( _E o. R ) B <-> E. x ( A R x /\ x _E B ) )
7 df-rex
 |-  ( E. x e. B A R x <-> E. x ( x e. B /\ A R x ) )
8 5 6 7 3bitr4i
 |-  ( A ( _E o. R ) B <-> E. x e. B A R x )