Step |
Hyp |
Ref |
Expression |
1 |
|
df-so |
⊢ ( 𝑅 Or 𝐴 ↔ ( 𝑅 Po 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ) ) |
2 |
|
opelxp |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 × 𝐴 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) |
3 |
|
brun |
⊢ ( 𝑥 ( I ∪ ◡ 𝑅 ) 𝑦 ↔ ( 𝑥 I 𝑦 ∨ 𝑥 ◡ 𝑅 𝑦 ) ) |
4 |
|
vex |
⊢ 𝑦 ∈ V |
5 |
4
|
ideq |
⊢ ( 𝑥 I 𝑦 ↔ 𝑥 = 𝑦 ) |
6 |
|
vex |
⊢ 𝑥 ∈ V |
7 |
6 4
|
brcnv |
⊢ ( 𝑥 ◡ 𝑅 𝑦 ↔ 𝑦 𝑅 𝑥 ) |
8 |
5 7
|
orbi12i |
⊢ ( ( 𝑥 I 𝑦 ∨ 𝑥 ◡ 𝑅 𝑦 ) ↔ ( 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ) |
9 |
3 8
|
bitr2i |
⊢ ( ( 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ↔ 𝑥 ( I ∪ ◡ 𝑅 ) 𝑦 ) |
10 |
9
|
orbi2i |
⊢ ( ( 𝑥 𝑅 𝑦 ∨ ( 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ) ↔ ( 𝑥 𝑅 𝑦 ∨ 𝑥 ( I ∪ ◡ 𝑅 ) 𝑦 ) ) |
11 |
|
3orass |
⊢ ( ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ↔ ( 𝑥 𝑅 𝑦 ∨ ( 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ) ) |
12 |
|
brun |
⊢ ( 𝑥 ( 𝑅 ∪ ( I ∪ ◡ 𝑅 ) ) 𝑦 ↔ ( 𝑥 𝑅 𝑦 ∨ 𝑥 ( I ∪ ◡ 𝑅 ) 𝑦 ) ) |
13 |
10 11 12
|
3bitr4i |
⊢ ( ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ↔ 𝑥 ( 𝑅 ∪ ( I ∪ ◡ 𝑅 ) ) 𝑦 ) |
14 |
|
df-br |
⊢ ( 𝑥 ( 𝑅 ∪ ( I ∪ ◡ 𝑅 ) ) 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ ( 𝑅 ∪ ( I ∪ ◡ 𝑅 ) ) ) |
15 |
13 14
|
bitr2i |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝑅 ∪ ( I ∪ ◡ 𝑅 ) ) ↔ ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ) |
16 |
2 15
|
imbi12i |
⊢ ( ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 × 𝐴 ) → 〈 𝑥 , 𝑦 〉 ∈ ( 𝑅 ∪ ( I ∪ ◡ 𝑅 ) ) ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ) ) |
17 |
16
|
2albii |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 × 𝐴 ) → 〈 𝑥 , 𝑦 〉 ∈ ( 𝑅 ∪ ( I ∪ ◡ 𝑅 ) ) ) ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ) ) |
18 |
|
relxp |
⊢ Rel ( 𝐴 × 𝐴 ) |
19 |
|
ssrel |
⊢ ( Rel ( 𝐴 × 𝐴 ) → ( ( 𝐴 × 𝐴 ) ⊆ ( 𝑅 ∪ ( I ∪ ◡ 𝑅 ) ) ↔ ∀ 𝑥 ∀ 𝑦 ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 × 𝐴 ) → 〈 𝑥 , 𝑦 〉 ∈ ( 𝑅 ∪ ( I ∪ ◡ 𝑅 ) ) ) ) ) |
20 |
18 19
|
ax-mp |
⊢ ( ( 𝐴 × 𝐴 ) ⊆ ( 𝑅 ∪ ( I ∪ ◡ 𝑅 ) ) ↔ ∀ 𝑥 ∀ 𝑦 ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 × 𝐴 ) → 〈 𝑥 , 𝑦 〉 ∈ ( 𝑅 ∪ ( I ∪ ◡ 𝑅 ) ) ) ) |
21 |
|
r2al |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ) ) |
22 |
17 20 21
|
3bitr4i |
⊢ ( ( 𝐴 × 𝐴 ) ⊆ ( 𝑅 ∪ ( I ∪ ◡ 𝑅 ) ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ) |
23 |
22
|
anbi2i |
⊢ ( ( 𝑅 Po 𝐴 ∧ ( 𝐴 × 𝐴 ) ⊆ ( 𝑅 ∪ ( I ∪ ◡ 𝑅 ) ) ) ↔ ( 𝑅 Po 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ) ) |
24 |
1 23
|
bitr4i |
⊢ ( 𝑅 Or 𝐴 ↔ ( 𝑅 Po 𝐴 ∧ ( 𝐴 × 𝐴 ) ⊆ ( 𝑅 ∪ ( I ∪ ◡ 𝑅 ) ) ) ) |