Metamath Proof Explorer


Theorem dffr6

Description: Alternate definition of df-fr . See dffr5 for a definition without dummy variables (but note that their equivalence uses ax-sep ). (Contributed by BJ, 16-Nov-2024)

Ref Expression
Assertion dffr6 R Fr A x 𝒫 A y x z x ¬ z R y

Proof

Step Hyp Ref Expression
1 velpw x 𝒫 A x A
2 1 bicomi x A x 𝒫 A
3 velsn x x =
4 3 bicomi x = x
5 4 necon3abii x ¬ x
6 2 5 anbi12i x A x x 𝒫 A ¬ x
7 eldif x 𝒫 A x 𝒫 A ¬ x
8 6 7 bitr4i x A x x 𝒫 A
9 8 imbi1i x A x y x z x ¬ z R y x 𝒫 A y x z x ¬ z R y
10 9 albii x x A x y x z x ¬ z R y x x 𝒫 A y x z x ¬ z R y
11 df-fr R Fr A x x A x y x z x ¬ z R y
12 df-ral x 𝒫 A y x z x ¬ z R y x x 𝒫 A y x z x ¬ z R y
13 10 11 12 3bitr4i R Fr A x 𝒫 A y x z x ¬ z R y