Metamath Proof Explorer


Theorem dffr6

Description: Alternate definition of df-fr . See dffr5 for a definition without dummy variables (but note that their equivalence uses ax-sep ). (Contributed by BJ, 16-Nov-2024)

Ref Expression
Assertion dffr6 RFrAx𝒫Ayxzx¬zRy

Proof

Step Hyp Ref Expression
1 velpw x𝒫AxA
2 1 bicomi xAx𝒫A
3 velsn xx=
4 3 bicomi x=x
5 4 necon3abii x¬x
6 2 5 anbi12i xAxx𝒫A¬x
7 eldif x𝒫Ax𝒫A¬x
8 6 7 bitr4i xAxx𝒫A
9 8 imbi1i xAxyxzx¬zRyx𝒫Ayxzx¬zRy
10 9 albii xxAxyxzx¬zRyxx𝒫Ayxzx¬zRy
11 df-fr RFrAxxAxyxzx¬zRy
12 df-ral x𝒫Ayxzx¬zRyxx𝒫Ayxzx¬zRy
13 10 11 12 3bitr4i RFrAx𝒫Ayxzx¬zRy