Description: A nonempty subset of an R -well-founded class has an R -minimal element (deduction form). (Contributed by BJ, 16-Nov-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | frd.fr | |
|
frd.ss | |
||
frd.ex | |
||
frd.n0 | |
||
Assertion | frd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frd.fr | |
|
2 | frd.ss | |
|
3 | frd.ex | |
|
4 | frd.n0 | |
|
5 | simpr | |
|
6 | biidd | |
|
7 | 5 6 | raleqbidv | |
8 | 5 7 | rexeqbidv | |
9 | 3 2 | elpwd | |
10 | nelsn | |
|
11 | 4 10 | syl | |
12 | 9 11 | eldifd | |
13 | dffr6 | |
|
14 | 1 13 | sylib | |
15 | 8 12 14 | rspcdv2 | |