Metamath Proof Explorer


Theorem frd

Description: A nonempty subset of an R -well-founded class has an R -minimal element (deduction form). (Contributed by BJ, 16-Nov-2024)

Ref Expression
Hypotheses frd.fr φRFrA
frd.ss φBA
frd.ex φBV
frd.n0 φB
Assertion frd φxByB¬yRx

Proof

Step Hyp Ref Expression
1 frd.fr φRFrA
2 frd.ss φBA
3 frd.ex φBV
4 frd.n0 φB
5 simpr φz=Bz=B
6 biidd φz=B¬yRx¬yRx
7 5 6 raleqbidv φz=Byz¬yRxyB¬yRx
8 5 7 rexeqbidv φz=Bxzyz¬yRxxByB¬yRx
9 3 2 elpwd φB𝒫A
10 nelsn B¬B
11 4 10 syl φ¬B
12 9 11 eldifd φB𝒫A
13 dffr6 RFrAz𝒫Axzyz¬yRx
14 1 13 sylib φz𝒫Axzyz¬yRx
15 8 12 14 rspcdv2 φxByB¬yRx