Metamath Proof Explorer


Theorem rspcdv2

Description: Restricted specialization, using implicit substitution. (Contributed by Stanislas Polu, 9-Mar-2020)

Ref Expression
Hypotheses rspcdv2.1 φx=Aψχ
rspcdv2.2 φAB
rspcdv2.3 φxBψ
Assertion rspcdv2 φχ

Proof

Step Hyp Ref Expression
1 rspcdv2.1 φx=Aψχ
2 rspcdv2.2 φAB
3 rspcdv2.3 φxBψ
4 2 1 rspcdv φxBψχ
5 3 4 mpd φχ