Metamath Proof Explorer


Theorem rspcdv2

Description: Restricted specialization, using implicit substitution. (Contributed by Stanislas Polu, 9-Mar-2020)

Ref Expression
Hypotheses rspcdv2.1
|- ( ( ph /\ x = A ) -> ( ps <-> ch ) )
rspcdv2.2
|- ( ph -> A e. B )
rspcdv2.3
|- ( ph -> A. x e. B ps )
Assertion rspcdv2
|- ( ph -> ch )

Proof

Step Hyp Ref Expression
1 rspcdv2.1
 |-  ( ( ph /\ x = A ) -> ( ps <-> ch ) )
2 rspcdv2.2
 |-  ( ph -> A e. B )
3 rspcdv2.3
 |-  ( ph -> A. x e. B ps )
4 2 1 rspcdv
 |-  ( ph -> ( A. x e. B ps -> ch ) )
5 3 4 mpd
 |-  ( ph -> ch )