Metamath Proof Explorer


Theorem raleqbidv

Description: Equality deduction for restricted universal quantifier. (Contributed by NM, 6-Nov-2007) Remove usage of ax-10 , ax-11 , and ax-12 and reduce distinct variable conditions. (Revised by Steven Nguyen, 30-Apr-2023)

Ref Expression
Hypotheses raleqbidv.1 φA=B
raleqbidv.2 φψχ
Assertion raleqbidv φxAψxBχ

Proof

Step Hyp Ref Expression
1 raleqbidv.1 φA=B
2 raleqbidv.2 φψχ
3 1 eleq2d φxAxB
4 3 2 imbi12d φxAψxBχ
5 4 ralbidv2 φxAψxBχ