Metamath Proof Explorer


Theorem raleqbidv

Description: Equality deduction for restricted universal quantifier. (Contributed by NM, 6-Nov-2007) Remove usage of ax-10 , ax-11 , and ax-12 and reduce distinct variable conditions. (Revised by Steven Nguyen, 30-Apr-2023)

Ref Expression
Hypotheses raleqbidv.1
|- ( ph -> A = B )
raleqbidv.2
|- ( ph -> ( ps <-> ch ) )
Assertion raleqbidv
|- ( ph -> ( A. x e. A ps <-> A. x e. B ch ) )

Proof

Step Hyp Ref Expression
1 raleqbidv.1
 |-  ( ph -> A = B )
2 raleqbidv.2
 |-  ( ph -> ( ps <-> ch ) )
3 1 eleq2d
 |-  ( ph -> ( x e. A <-> x e. B ) )
4 3 2 imbi12d
 |-  ( ph -> ( ( x e. A -> ps ) <-> ( x e. B -> ch ) ) )
5 4 ralbidv2
 |-  ( ph -> ( A. x e. A ps <-> A. x e. B ch ) )