Metamath Proof Explorer


Theorem fri

Description: A nonempty subset of an R -well-founded class has an R -minimal element (inference form). (Contributed by BJ, 16-Nov-2024) (Proof shortened by BJ, 19-Nov-2024)

Ref Expression
Assertion fri B C R Fr A B A B x B y B ¬ y R x

Proof

Step Hyp Ref Expression
1 simplr B C R Fr A B A B R Fr A
2 simprl B C R Fr A B A B B A
3 simpll B C R Fr A B A B B C
4 simprr B C R Fr A B A B B
5 1 2 3 4 frd B C R Fr A B A B x B y B ¬ y R x