Metamath Proof Explorer


Theorem friOLD

Description: Obsolete version of fri as of 16-Nov-2024. (Contributed by NM, 18-Mar-1997) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion friOLD B C R Fr A B A B x B y B ¬ y R x

Proof

Step Hyp Ref Expression
1 df-fr R Fr A z z A z x z y z ¬ y R x
2 sseq1 z = B z A B A
3 neeq1 z = B z B
4 2 3 anbi12d z = B z A z B A B
5 raleq z = B y z ¬ y R x y B ¬ y R x
6 5 rexeqbi1dv z = B x z y z ¬ y R x x B y B ¬ y R x
7 4 6 imbi12d z = B z A z x z y z ¬ y R x B A B x B y B ¬ y R x
8 7 spcgv B C z z A z x z y z ¬ y R x B A B x B y B ¬ y R x
9 1 8 syl5bi B C R Fr A B A B x B y B ¬ y R x
10 9 imp31 B C R Fr A B A B x B y B ¬ y R x