Metamath Proof Explorer


Theorem friOLD

Description: Obsolete version of fri as of 16-Nov-2024. (Contributed by NM, 18-Mar-1997) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion friOLD ( ( ( 𝐵𝐶𝑅 Fr 𝐴 ) ∧ ( 𝐵𝐴𝐵 ≠ ∅ ) ) → ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 𝑅 𝑥 )

Proof

Step Hyp Ref Expression
1 df-fr ( 𝑅 Fr 𝐴 ↔ ∀ 𝑧 ( ( 𝑧𝐴𝑧 ≠ ∅ ) → ∃ 𝑥𝑧𝑦𝑧 ¬ 𝑦 𝑅 𝑥 ) )
2 sseq1 ( 𝑧 = 𝐵 → ( 𝑧𝐴𝐵𝐴 ) )
3 neeq1 ( 𝑧 = 𝐵 → ( 𝑧 ≠ ∅ ↔ 𝐵 ≠ ∅ ) )
4 2 3 anbi12d ( 𝑧 = 𝐵 → ( ( 𝑧𝐴𝑧 ≠ ∅ ) ↔ ( 𝐵𝐴𝐵 ≠ ∅ ) ) )
5 raleq ( 𝑧 = 𝐵 → ( ∀ 𝑦𝑧 ¬ 𝑦 𝑅 𝑥 ↔ ∀ 𝑦𝐵 ¬ 𝑦 𝑅 𝑥 ) )
6 5 rexeqbi1dv ( 𝑧 = 𝐵 → ( ∃ 𝑥𝑧𝑦𝑧 ¬ 𝑦 𝑅 𝑥 ↔ ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 𝑅 𝑥 ) )
7 4 6 imbi12d ( 𝑧 = 𝐵 → ( ( ( 𝑧𝐴𝑧 ≠ ∅ ) → ∃ 𝑥𝑧𝑦𝑧 ¬ 𝑦 𝑅 𝑥 ) ↔ ( ( 𝐵𝐴𝐵 ≠ ∅ ) → ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 𝑅 𝑥 ) ) )
8 7 spcgv ( 𝐵𝐶 → ( ∀ 𝑧 ( ( 𝑧𝐴𝑧 ≠ ∅ ) → ∃ 𝑥𝑧𝑦𝑧 ¬ 𝑦 𝑅 𝑥 ) → ( ( 𝐵𝐴𝐵 ≠ ∅ ) → ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 𝑅 𝑥 ) ) )
9 1 8 syl5bi ( 𝐵𝐶 → ( 𝑅 Fr 𝐴 → ( ( 𝐵𝐴𝐵 ≠ ∅ ) → ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 𝑅 𝑥 ) ) )
10 9 imp31 ( ( ( 𝐵𝐶𝑅 Fr 𝐴 ) ∧ ( 𝐵𝐴𝐵 ≠ ∅ ) ) → ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 𝑅 𝑥 )