| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-fr | ⊢ ( 𝑅  Fr  𝐴  ↔  ∀ 𝑧 ( ( 𝑧  ⊆  𝐴  ∧  𝑧  ≠  ∅ )  →  ∃ 𝑥  ∈  𝑧 ∀ 𝑦  ∈  𝑧 ¬  𝑦 𝑅 𝑥 ) ) | 
						
							| 2 |  | sseq1 | ⊢ ( 𝑧  =  𝐵  →  ( 𝑧  ⊆  𝐴  ↔  𝐵  ⊆  𝐴 ) ) | 
						
							| 3 |  | neeq1 | ⊢ ( 𝑧  =  𝐵  →  ( 𝑧  ≠  ∅  ↔  𝐵  ≠  ∅ ) ) | 
						
							| 4 | 2 3 | anbi12d | ⊢ ( 𝑧  =  𝐵  →  ( ( 𝑧  ⊆  𝐴  ∧  𝑧  ≠  ∅ )  ↔  ( 𝐵  ⊆  𝐴  ∧  𝐵  ≠  ∅ ) ) ) | 
						
							| 5 |  | raleq | ⊢ ( 𝑧  =  𝐵  →  ( ∀ 𝑦  ∈  𝑧 ¬  𝑦 𝑅 𝑥  ↔  ∀ 𝑦  ∈  𝐵 ¬  𝑦 𝑅 𝑥 ) ) | 
						
							| 6 | 5 | rexeqbi1dv | ⊢ ( 𝑧  =  𝐵  →  ( ∃ 𝑥  ∈  𝑧 ∀ 𝑦  ∈  𝑧 ¬  𝑦 𝑅 𝑥  ↔  ∃ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ¬  𝑦 𝑅 𝑥 ) ) | 
						
							| 7 | 4 6 | imbi12d | ⊢ ( 𝑧  =  𝐵  →  ( ( ( 𝑧  ⊆  𝐴  ∧  𝑧  ≠  ∅ )  →  ∃ 𝑥  ∈  𝑧 ∀ 𝑦  ∈  𝑧 ¬  𝑦 𝑅 𝑥 )  ↔  ( ( 𝐵  ⊆  𝐴  ∧  𝐵  ≠  ∅ )  →  ∃ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ¬  𝑦 𝑅 𝑥 ) ) ) | 
						
							| 8 | 7 | spcgv | ⊢ ( 𝐵  ∈  𝐶  →  ( ∀ 𝑧 ( ( 𝑧  ⊆  𝐴  ∧  𝑧  ≠  ∅ )  →  ∃ 𝑥  ∈  𝑧 ∀ 𝑦  ∈  𝑧 ¬  𝑦 𝑅 𝑥 )  →  ( ( 𝐵  ⊆  𝐴  ∧  𝐵  ≠  ∅ )  →  ∃ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ¬  𝑦 𝑅 𝑥 ) ) ) | 
						
							| 9 | 1 8 | biimtrid | ⊢ ( 𝐵  ∈  𝐶  →  ( 𝑅  Fr  𝐴  →  ( ( 𝐵  ⊆  𝐴  ∧  𝐵  ≠  ∅ )  →  ∃ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ¬  𝑦 𝑅 𝑥 ) ) ) | 
						
							| 10 | 9 | imp31 | ⊢ ( ( ( 𝐵  ∈  𝐶  ∧  𝑅  Fr  𝐴 )  ∧  ( 𝐵  ⊆  𝐴  ∧  𝐵  ≠  ∅ ) )  →  ∃ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ¬  𝑦 𝑅 𝑥 ) |