Step |
Hyp |
Ref |
Expression |
1 |
|
frd.fr |
⊢ ( 𝜑 → 𝑅 Fr 𝐴 ) |
2 |
|
frd.ss |
⊢ ( 𝜑 → 𝐵 ⊆ 𝐴 ) |
3 |
|
frd.ex |
⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) |
4 |
|
frd.n0 |
⊢ ( 𝜑 → 𝐵 ≠ ∅ ) |
5 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑧 = 𝐵 ) → 𝑧 = 𝐵 ) |
6 |
|
biidd |
⊢ ( ( 𝜑 ∧ 𝑧 = 𝐵 ) → ( ¬ 𝑦 𝑅 𝑥 ↔ ¬ 𝑦 𝑅 𝑥 ) ) |
7 |
5 6
|
raleqbidv |
⊢ ( ( 𝜑 ∧ 𝑧 = 𝐵 ) → ( ∀ 𝑦 ∈ 𝑧 ¬ 𝑦 𝑅 𝑥 ↔ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝑥 ) ) |
8 |
5 7
|
rexeqbidv |
⊢ ( ( 𝜑 ∧ 𝑧 = 𝐵 ) → ( ∃ 𝑥 ∈ 𝑧 ∀ 𝑦 ∈ 𝑧 ¬ 𝑦 𝑅 𝑥 ↔ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝑥 ) ) |
9 |
3 2
|
elpwd |
⊢ ( 𝜑 → 𝐵 ∈ 𝒫 𝐴 ) |
10 |
|
nelsn |
⊢ ( 𝐵 ≠ ∅ → ¬ 𝐵 ∈ { ∅ } ) |
11 |
4 10
|
syl |
⊢ ( 𝜑 → ¬ 𝐵 ∈ { ∅ } ) |
12 |
9 11
|
eldifd |
⊢ ( 𝜑 → 𝐵 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ) |
13 |
|
dffr6 |
⊢ ( 𝑅 Fr 𝐴 ↔ ∀ 𝑧 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ∃ 𝑥 ∈ 𝑧 ∀ 𝑦 ∈ 𝑧 ¬ 𝑦 𝑅 𝑥 ) |
14 |
1 13
|
sylib |
⊢ ( 𝜑 → ∀ 𝑧 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ∃ 𝑥 ∈ 𝑧 ∀ 𝑦 ∈ 𝑧 ¬ 𝑦 𝑅 𝑥 ) |
15 |
8 12 14
|
rspcdv2 |
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝑥 ) |