Metamath Proof Explorer


Theorem frd

Description: A nonempty subset of an R -well-founded class has an R -minimal element (deduction form). (Contributed by BJ, 16-Nov-2024)

Ref Expression
Hypotheses frd.fr ( 𝜑𝑅 Fr 𝐴 )
frd.ss ( 𝜑𝐵𝐴 )
frd.ex ( 𝜑𝐵𝑉 )
frd.n0 ( 𝜑𝐵 ≠ ∅ )
Assertion frd ( 𝜑 → ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 𝑅 𝑥 )

Proof

Step Hyp Ref Expression
1 frd.fr ( 𝜑𝑅 Fr 𝐴 )
2 frd.ss ( 𝜑𝐵𝐴 )
3 frd.ex ( 𝜑𝐵𝑉 )
4 frd.n0 ( 𝜑𝐵 ≠ ∅ )
5 simpr ( ( 𝜑𝑧 = 𝐵 ) → 𝑧 = 𝐵 )
6 biidd ( ( 𝜑𝑧 = 𝐵 ) → ( ¬ 𝑦 𝑅 𝑥 ↔ ¬ 𝑦 𝑅 𝑥 ) )
7 5 6 raleqbidv ( ( 𝜑𝑧 = 𝐵 ) → ( ∀ 𝑦𝑧 ¬ 𝑦 𝑅 𝑥 ↔ ∀ 𝑦𝐵 ¬ 𝑦 𝑅 𝑥 ) )
8 5 7 rexeqbidv ( ( 𝜑𝑧 = 𝐵 ) → ( ∃ 𝑥𝑧𝑦𝑧 ¬ 𝑦 𝑅 𝑥 ↔ ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 𝑅 𝑥 ) )
9 3 2 elpwd ( 𝜑𝐵 ∈ 𝒫 𝐴 )
10 nelsn ( 𝐵 ≠ ∅ → ¬ 𝐵 ∈ { ∅ } )
11 4 10 syl ( 𝜑 → ¬ 𝐵 ∈ { ∅ } )
12 9 11 eldifd ( 𝜑𝐵 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) )
13 dffr6 ( 𝑅 Fr 𝐴 ↔ ∀ 𝑧 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ∃ 𝑥𝑧𝑦𝑧 ¬ 𝑦 𝑅 𝑥 )
14 1 13 sylib ( 𝜑 → ∀ 𝑧 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ∃ 𝑥𝑧𝑦𝑧 ¬ 𝑦 𝑅 𝑥 )
15 8 12 14 rspcdv2 ( 𝜑 → ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 𝑅 𝑥 )