Step |
Hyp |
Ref |
Expression |
1 |
|
onfr |
|- _E Fr On |
2 |
|
df-po |
|- ( _E Po On <-> A. x e. On A. y e. On A. z e. On ( -. x _E x /\ ( ( x _E y /\ y _E z ) -> x _E z ) ) ) |
3 |
|
eloni |
|- ( x e. On -> Ord x ) |
4 |
|
ordirr |
|- ( Ord x -> -. x e. x ) |
5 |
3 4
|
syl |
|- ( x e. On -> -. x e. x ) |
6 |
|
epel |
|- ( x _E x <-> x e. x ) |
7 |
5 6
|
sylnibr |
|- ( x e. On -> -. x _E x ) |
8 |
|
ontr1 |
|- ( z e. On -> ( ( x e. y /\ y e. z ) -> x e. z ) ) |
9 |
|
epel |
|- ( x _E y <-> x e. y ) |
10 |
|
epel |
|- ( y _E z <-> y e. z ) |
11 |
9 10
|
anbi12i |
|- ( ( x _E y /\ y _E z ) <-> ( x e. y /\ y e. z ) ) |
12 |
|
epel |
|- ( x _E z <-> x e. z ) |
13 |
8 11 12
|
3imtr4g |
|- ( z e. On -> ( ( x _E y /\ y _E z ) -> x _E z ) ) |
14 |
7 13
|
anim12i |
|- ( ( x e. On /\ z e. On ) -> ( -. x _E x /\ ( ( x _E y /\ y _E z ) -> x _E z ) ) ) |
15 |
14
|
ralrimiva |
|- ( x e. On -> A. z e. On ( -. x _E x /\ ( ( x _E y /\ y _E z ) -> x _E z ) ) ) |
16 |
15
|
ralrimivw |
|- ( x e. On -> A. y e. On A. z e. On ( -. x _E x /\ ( ( x _E y /\ y _E z ) -> x _E z ) ) ) |
17 |
2 16
|
mprgbir |
|- _E Po On |
18 |
|
eloni |
|- ( y e. On -> Ord y ) |
19 |
|
ordtri3or |
|- ( ( Ord x /\ Ord y ) -> ( x e. y \/ x = y \/ y e. x ) ) |
20 |
|
biid |
|- ( x = y <-> x = y ) |
21 |
|
epel |
|- ( y _E x <-> y e. x ) |
22 |
9 20 21
|
3orbi123i |
|- ( ( x _E y \/ x = y \/ y _E x ) <-> ( x e. y \/ x = y \/ y e. x ) ) |
23 |
19 22
|
sylibr |
|- ( ( Ord x /\ Ord y ) -> ( x _E y \/ x = y \/ y _E x ) ) |
24 |
3 18 23
|
syl2an |
|- ( ( x e. On /\ y e. On ) -> ( x _E y \/ x = y \/ y _E x ) ) |
25 |
24
|
rgen2 |
|- A. x e. On A. y e. On ( x _E y \/ x = y \/ y _E x ) |
26 |
|
df-so |
|- ( _E Or On <-> ( _E Po On /\ A. x e. On A. y e. On ( x _E y \/ x = y \/ y _E x ) ) ) |
27 |
17 25 26
|
mpbir2an |
|- _E Or On |
28 |
|
df-we |
|- ( _E We On <-> ( _E Fr On /\ _E Or On ) ) |
29 |
1 27 28
|
mpbir2an |
|- _E We On |