Description: Join 3 biconditionals with disjunction. (Contributed by NM, 17-May-1994)
Ref | Expression | ||
---|---|---|---|
Hypotheses | bi3.1 | |- ( ph <-> ps ) |
|
bi3.2 | |- ( ch <-> th ) |
||
bi3.3 | |- ( ta <-> et ) |
||
Assertion | 3orbi123i | |- ( ( ph \/ ch \/ ta ) <-> ( ps \/ th \/ et ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bi3.1 | |- ( ph <-> ps ) |
|
2 | bi3.2 | |- ( ch <-> th ) |
|
3 | bi3.3 | |- ( ta <-> et ) |
|
4 | 1 2 | orbi12i | |- ( ( ph \/ ch ) <-> ( ps \/ th ) ) |
5 | 4 3 | orbi12i | |- ( ( ( ph \/ ch ) \/ ta ) <-> ( ( ps \/ th ) \/ et ) ) |
6 | df-3or | |- ( ( ph \/ ch \/ ta ) <-> ( ( ph \/ ch ) \/ ta ) ) |
|
7 | df-3or | |- ( ( ps \/ th \/ et ) <-> ( ( ps \/ th ) \/ et ) ) |
|
8 | 5 6 7 | 3bitr4i | |- ( ( ph \/ ch \/ ta ) <-> ( ps \/ th \/ et ) ) |