| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ordin |
|- ( ( Ord A /\ Ord B ) -> Ord ( A i^i B ) ) |
| 2 |
|
ordirr |
|- ( Ord ( A i^i B ) -> -. ( A i^i B ) e. ( A i^i B ) ) |
| 3 |
1 2
|
syl |
|- ( ( Ord A /\ Ord B ) -> -. ( A i^i B ) e. ( A i^i B ) ) |
| 4 |
|
ianor |
|- ( -. ( ( A i^i B ) e. A /\ ( B i^i A ) e. B ) <-> ( -. ( A i^i B ) e. A \/ -. ( B i^i A ) e. B ) ) |
| 5 |
|
elin |
|- ( ( A i^i B ) e. ( A i^i B ) <-> ( ( A i^i B ) e. A /\ ( A i^i B ) e. B ) ) |
| 6 |
|
incom |
|- ( A i^i B ) = ( B i^i A ) |
| 7 |
6
|
eleq1i |
|- ( ( A i^i B ) e. B <-> ( B i^i A ) e. B ) |
| 8 |
7
|
anbi2i |
|- ( ( ( A i^i B ) e. A /\ ( A i^i B ) e. B ) <-> ( ( A i^i B ) e. A /\ ( B i^i A ) e. B ) ) |
| 9 |
5 8
|
bitri |
|- ( ( A i^i B ) e. ( A i^i B ) <-> ( ( A i^i B ) e. A /\ ( B i^i A ) e. B ) ) |
| 10 |
4 9
|
xchnxbir |
|- ( -. ( A i^i B ) e. ( A i^i B ) <-> ( -. ( A i^i B ) e. A \/ -. ( B i^i A ) e. B ) ) |
| 11 |
3 10
|
sylib |
|- ( ( Ord A /\ Ord B ) -> ( -. ( A i^i B ) e. A \/ -. ( B i^i A ) e. B ) ) |
| 12 |
|
inss1 |
|- ( A i^i B ) C_ A |
| 13 |
|
ordsseleq |
|- ( ( Ord ( A i^i B ) /\ Ord A ) -> ( ( A i^i B ) C_ A <-> ( ( A i^i B ) e. A \/ ( A i^i B ) = A ) ) ) |
| 14 |
12 13
|
mpbii |
|- ( ( Ord ( A i^i B ) /\ Ord A ) -> ( ( A i^i B ) e. A \/ ( A i^i B ) = A ) ) |
| 15 |
1 14
|
sylan |
|- ( ( ( Ord A /\ Ord B ) /\ Ord A ) -> ( ( A i^i B ) e. A \/ ( A i^i B ) = A ) ) |
| 16 |
15
|
anabss1 |
|- ( ( Ord A /\ Ord B ) -> ( ( A i^i B ) e. A \/ ( A i^i B ) = A ) ) |
| 17 |
16
|
ord |
|- ( ( Ord A /\ Ord B ) -> ( -. ( A i^i B ) e. A -> ( A i^i B ) = A ) ) |
| 18 |
|
dfss2 |
|- ( A C_ B <-> ( A i^i B ) = A ) |
| 19 |
17 18
|
imbitrrdi |
|- ( ( Ord A /\ Ord B ) -> ( -. ( A i^i B ) e. A -> A C_ B ) ) |
| 20 |
|
ordin |
|- ( ( Ord B /\ Ord A ) -> Ord ( B i^i A ) ) |
| 21 |
|
inss1 |
|- ( B i^i A ) C_ B |
| 22 |
|
ordsseleq |
|- ( ( Ord ( B i^i A ) /\ Ord B ) -> ( ( B i^i A ) C_ B <-> ( ( B i^i A ) e. B \/ ( B i^i A ) = B ) ) ) |
| 23 |
21 22
|
mpbii |
|- ( ( Ord ( B i^i A ) /\ Ord B ) -> ( ( B i^i A ) e. B \/ ( B i^i A ) = B ) ) |
| 24 |
20 23
|
sylan |
|- ( ( ( Ord B /\ Ord A ) /\ Ord B ) -> ( ( B i^i A ) e. B \/ ( B i^i A ) = B ) ) |
| 25 |
24
|
anabss4 |
|- ( ( Ord A /\ Ord B ) -> ( ( B i^i A ) e. B \/ ( B i^i A ) = B ) ) |
| 26 |
25
|
ord |
|- ( ( Ord A /\ Ord B ) -> ( -. ( B i^i A ) e. B -> ( B i^i A ) = B ) ) |
| 27 |
|
dfss2 |
|- ( B C_ A <-> ( B i^i A ) = B ) |
| 28 |
26 27
|
imbitrrdi |
|- ( ( Ord A /\ Ord B ) -> ( -. ( B i^i A ) e. B -> B C_ A ) ) |
| 29 |
19 28
|
orim12d |
|- ( ( Ord A /\ Ord B ) -> ( ( -. ( A i^i B ) e. A \/ -. ( B i^i A ) e. B ) -> ( A C_ B \/ B C_ A ) ) ) |
| 30 |
11 29
|
mpd |
|- ( ( Ord A /\ Ord B ) -> ( A C_ B \/ B C_ A ) ) |
| 31 |
|
sspsstri |
|- ( ( A C_ B \/ B C_ A ) <-> ( A C. B \/ A = B \/ B C. A ) ) |
| 32 |
30 31
|
sylib |
|- ( ( Ord A /\ Ord B ) -> ( A C. B \/ A = B \/ B C. A ) ) |
| 33 |
|
ordelpss |
|- ( ( Ord A /\ Ord B ) -> ( A e. B <-> A C. B ) ) |
| 34 |
|
biidd |
|- ( ( Ord A /\ Ord B ) -> ( A = B <-> A = B ) ) |
| 35 |
|
ordelpss |
|- ( ( Ord B /\ Ord A ) -> ( B e. A <-> B C. A ) ) |
| 36 |
35
|
ancoms |
|- ( ( Ord A /\ Ord B ) -> ( B e. A <-> B C. A ) ) |
| 37 |
33 34 36
|
3orbi123d |
|- ( ( Ord A /\ Ord B ) -> ( ( A e. B \/ A = B \/ B e. A ) <-> ( A C. B \/ A = B \/ B C. A ) ) ) |
| 38 |
32 37
|
mpbird |
|- ( ( Ord A /\ Ord B ) -> ( A e. B \/ A = B \/ B e. A ) ) |