Metamath Proof Explorer


Definition df-plpq

Description: Define pre-addition on positive fractions. This is a "temporary" set used in the construction of complex numbers df-c , and is intended to be used only by the construction. This "pre-addition" operation works directly with ordered pairs of integers. The actual positive fraction addition +Q ( df-plq ) works with the equivalence classes of these ordered pairs determined by the equivalence relation ~Q ( df-enq ). (Analogous remarks apply to the other "pre-" operations in the complex number construction that follows.) From Proposition 9-2.3 of Gleason p. 117. (Contributed by NM, 28-Aug-1995) (New usage is discouraged.)

Ref Expression
Assertion df-plpq +pQ = ( ๐‘ฅ โˆˆ ( N ร— N ) , ๐‘ฆ โˆˆ ( N ร— N ) โ†ฆ โŸจ ( ( ( 1st โ€˜ ๐‘ฅ ) ยทN ( 2nd โ€˜ ๐‘ฆ ) ) +N ( ( 1st โ€˜ ๐‘ฆ ) ยทN ( 2nd โ€˜ ๐‘ฅ ) ) ) , ( ( 2nd โ€˜ ๐‘ฅ ) ยทN ( 2nd โ€˜ ๐‘ฆ ) ) โŸฉ )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cplpq โŠข +pQ
1 vx โŠข ๐‘ฅ
2 cnpi โŠข N
3 2 2 cxp โŠข ( N ร— N )
4 vy โŠข ๐‘ฆ
5 c1st โŠข 1st
6 1 cv โŠข ๐‘ฅ
7 6 5 cfv โŠข ( 1st โ€˜ ๐‘ฅ )
8 cmi โŠข ยทN
9 c2nd โŠข 2nd
10 4 cv โŠข ๐‘ฆ
11 10 9 cfv โŠข ( 2nd โ€˜ ๐‘ฆ )
12 7 11 8 co โŠข ( ( 1st โ€˜ ๐‘ฅ ) ยทN ( 2nd โ€˜ ๐‘ฆ ) )
13 cpli โŠข +N
14 10 5 cfv โŠข ( 1st โ€˜ ๐‘ฆ )
15 6 9 cfv โŠข ( 2nd โ€˜ ๐‘ฅ )
16 14 15 8 co โŠข ( ( 1st โ€˜ ๐‘ฆ ) ยทN ( 2nd โ€˜ ๐‘ฅ ) )
17 12 16 13 co โŠข ( ( ( 1st โ€˜ ๐‘ฅ ) ยทN ( 2nd โ€˜ ๐‘ฆ ) ) +N ( ( 1st โ€˜ ๐‘ฆ ) ยทN ( 2nd โ€˜ ๐‘ฅ ) ) )
18 15 11 8 co โŠข ( ( 2nd โ€˜ ๐‘ฅ ) ยทN ( 2nd โ€˜ ๐‘ฆ ) )
19 17 18 cop โŠข โŸจ ( ( ( 1st โ€˜ ๐‘ฅ ) ยทN ( 2nd โ€˜ ๐‘ฆ ) ) +N ( ( 1st โ€˜ ๐‘ฆ ) ยทN ( 2nd โ€˜ ๐‘ฅ ) ) ) , ( ( 2nd โ€˜ ๐‘ฅ ) ยทN ( 2nd โ€˜ ๐‘ฆ ) ) โŸฉ
20 1 4 3 3 19 cmpo โŠข ( ๐‘ฅ โˆˆ ( N ร— N ) , ๐‘ฆ โˆˆ ( N ร— N ) โ†ฆ โŸจ ( ( ( 1st โ€˜ ๐‘ฅ ) ยทN ( 2nd โ€˜ ๐‘ฆ ) ) +N ( ( 1st โ€˜ ๐‘ฆ ) ยทN ( 2nd โ€˜ ๐‘ฅ ) ) ) , ( ( 2nd โ€˜ ๐‘ฅ ) ยทN ( 2nd โ€˜ ๐‘ฆ ) ) โŸฉ )
21 0 20 wceq โŠข +pQ = ( ๐‘ฅ โˆˆ ( N ร— N ) , ๐‘ฆ โˆˆ ( N ร— N ) โ†ฆ โŸจ ( ( ( 1st โ€˜ ๐‘ฅ ) ยทN ( 2nd โ€˜ ๐‘ฆ ) ) +N ( ( 1st โ€˜ ๐‘ฆ ) ยทN ( 2nd โ€˜ ๐‘ฅ ) ) ) , ( ( 2nd โ€˜ ๐‘ฅ ) ยทN ( 2nd โ€˜ ๐‘ฆ ) ) โŸฉ )