| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ordelord |
⊢ ( ( Ord 𝐵 ∧ 𝐴 ∈ 𝐵 ) → Ord 𝐴 ) |
| 2 |
|
ordnbtwn |
⊢ ( Ord 𝐴 → ¬ ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ suc 𝐴 ) ) |
| 3 |
|
imnan |
⊢ ( ( 𝐴 ∈ 𝐵 → ¬ 𝐵 ∈ suc 𝐴 ) ↔ ¬ ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ suc 𝐴 ) ) |
| 4 |
2 3
|
sylibr |
⊢ ( Ord 𝐴 → ( 𝐴 ∈ 𝐵 → ¬ 𝐵 ∈ suc 𝐴 ) ) |
| 5 |
4
|
adantr |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴 ∈ 𝐵 → ¬ 𝐵 ∈ suc 𝐴 ) ) |
| 6 |
|
ordsuc |
⊢ ( Ord 𝐴 ↔ Ord suc 𝐴 ) |
| 7 |
|
ordtri1 |
⊢ ( ( Ord suc 𝐴 ∧ Ord 𝐵 ) → ( suc 𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ suc 𝐴 ) ) |
| 8 |
6 7
|
sylanb |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( suc 𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ suc 𝐴 ) ) |
| 9 |
5 8
|
sylibrd |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴 ∈ 𝐵 → suc 𝐴 ⊆ 𝐵 ) ) |
| 10 |
1 9
|
sylan |
⊢ ( ( ( Ord 𝐵 ∧ 𝐴 ∈ 𝐵 ) ∧ Ord 𝐵 ) → ( 𝐴 ∈ 𝐵 → suc 𝐴 ⊆ 𝐵 ) ) |
| 11 |
10
|
exp31 |
⊢ ( Ord 𝐵 → ( 𝐴 ∈ 𝐵 → ( Ord 𝐵 → ( 𝐴 ∈ 𝐵 → suc 𝐴 ⊆ 𝐵 ) ) ) ) |
| 12 |
11
|
pm2.43b |
⊢ ( 𝐴 ∈ 𝐵 → ( Ord 𝐵 → ( 𝐴 ∈ 𝐵 → suc 𝐴 ⊆ 𝐵 ) ) ) |
| 13 |
12
|
pm2.43b |
⊢ ( Ord 𝐵 → ( 𝐴 ∈ 𝐵 → suc 𝐴 ⊆ 𝐵 ) ) |