Metamath Proof Explorer


Theorem ordsucss

Description: The successor of an element of an ordinal class is a subset of it. Lemma 1.14 of Schloeder p. 2. (Contributed by NM, 21-Jun-1998)

Ref Expression
Assertion ordsucss OrdBABsucAB

Proof

Step Hyp Ref Expression
1 ordelord OrdBABOrdA
2 ordnbtwn OrdA¬ABBsucA
3 imnan AB¬BsucA¬ABBsucA
4 2 3 sylibr OrdAAB¬BsucA
5 4 adantr OrdAOrdBAB¬BsucA
6 ordsuc OrdAOrdsucA
7 ordtri1 OrdsucAOrdBsucAB¬BsucA
8 6 7 sylanb OrdAOrdBsucAB¬BsucA
9 5 8 sylibrd OrdAOrdBABsucAB
10 1 9 sylan OrdBABOrdBABsucAB
11 10 exp31 OrdBABOrdBABsucAB
12 11 pm2.43b ABOrdBABsucAB
13 12 pm2.43b OrdBABsucAB