Description: An element of an ordinal class is ordinal. Proposition 7.6 of TakeutiZaring p. 36. Lemma 1.3 of Schloeder p. 1. (Contributed by NM, 23-Apr-1994)
Ref | Expression | ||
---|---|---|---|
Assertion | ordelord | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 | |
|
2 | 1 | anbi2d | |
3 | ordeq | |
|
4 | 2 3 | imbi12d | |
5 | simpll | |
|
6 | 3anrot | |
|
7 | 3anass | |
|
8 | 6 7 | bitr3i | |
9 | ordtr | |
|
10 | trel3 | |
|
11 | 9 10 | syl | |
12 | 8 11 | biimtrrid | |
13 | 12 | impl | |
14 | trel | |
|
15 | 9 14 | syl | |
16 | 15 | expcomd | |
17 | 16 | imp31 | |
18 | 17 | adantrl | |
19 | simplr | |
|
20 | ordwe | |
|
21 | wetrep | |
|
22 | 20 21 | sylan | |
23 | 5 13 18 19 22 | syl13anc | |
24 | 23 | ex | |
25 | 24 | pm2.43d | |
26 | 25 | alrimivv | |
27 | dftr2 | |
|
28 | 26 27 | sylibr | |
29 | trss | |
|
30 | 9 29 | syl | |
31 | wess | |
|
32 | 30 20 31 | syl6ci | |
33 | 32 | imp | |
34 | df-ord | |
|
35 | 28 33 34 | sylanbrc | |
36 | 4 35 | vtoclg | |
37 | 36 | anabsi7 | |