Metamath Proof Explorer


Theorem ordelord

Description: An element of an ordinal class is ordinal. Proposition 7.6 of TakeutiZaring p. 36. Lemma 1.3 of Schloeder p. 1. (Contributed by NM, 23-Apr-1994)

Ref Expression
Assertion ordelord OrdABAOrdB

Proof

Step Hyp Ref Expression
1 eleq1 x=BxABA
2 1 anbi2d x=BOrdAxAOrdABA
3 ordeq x=BOrdxOrdB
4 2 3 imbi12d x=BOrdAxAOrdxOrdABAOrdB
5 simpll OrdAxAzyyxOrdA
6 3anrot xAzyyxzyyxxA
7 3anass xAzyyxxAzyyx
8 6 7 bitr3i zyyxxAxAzyyx
9 ordtr OrdATrA
10 trel3 TrAzyyxxAzA
11 9 10 syl OrdAzyyxxAzA
12 8 11 biimtrrid OrdAxAzyyxzA
13 12 impl OrdAxAzyyxzA
14 trel TrAyxxAyA
15 9 14 syl OrdAyxxAyA
16 15 expcomd OrdAxAyxyA
17 16 imp31 OrdAxAyxyA
18 17 adantrl OrdAxAzyyxyA
19 simplr OrdAxAzyyxxA
20 ordwe OrdAEWeA
21 wetrep EWeAzAyAxAzyyxzx
22 20 21 sylan OrdAzAyAxAzyyxzx
23 5 13 18 19 22 syl13anc OrdAxAzyyxzyyxzx
24 23 ex OrdAxAzyyxzyyxzx
25 24 pm2.43d OrdAxAzyyxzx
26 25 alrimivv OrdAxAzyzyyxzx
27 dftr2 Trxzyzyyxzx
28 26 27 sylibr OrdAxATrx
29 trss TrAxAxA
30 9 29 syl OrdAxAxA
31 wess xAEWeAEWex
32 30 20 31 syl6ci OrdAxAEWex
33 32 imp OrdAxAEWex
34 df-ord OrdxTrxEWex
35 28 33 34 sylanbrc OrdAxAOrdx
36 4 35 vtoclg BAOrdABAOrdB
37 36 anabsi7 OrdABAOrdB