Metamath Proof Explorer


Theorem ordeq

Description: Equality theorem for the ordinal predicate. (Contributed by NM, 17-Sep-1993)

Ref Expression
Assertion ordeq A=BOrdAOrdB

Proof

Step Hyp Ref Expression
1 treq A=BTrATrB
2 weeq2 A=BEWeAEWeB
3 1 2 anbi12d A=BTrAEWeATrBEWeB
4 df-ord OrdATrAEWeA
5 df-ord OrdBTrBEWeB
6 3 4 5 3bitr4g A=BOrdAOrdB