Metamath Proof Explorer


Theorem treq

Description: Equality theorem for the transitive class predicate. (Contributed by NM, 17-Sep-1993)

Ref Expression
Assertion treq A=BTrATrB

Proof

Step Hyp Ref Expression
1 unieq A=BA=B
2 1 sseq1d A=BAABA
3 sseq2 A=BBABB
4 2 3 bitrd A=BAABB
5 df-tr TrAAA
6 df-tr TrBBB
7 4 5 6 3bitr4g A=BTrATrB