Metamath Proof Explorer


Theorem wetrep

Description: On a class well-ordered by membership, the membership predicate is transitive. (Contributed by NM, 22-Apr-1994)

Ref Expression
Assertion wetrep EWeAxAyAzAxyyzxz

Proof

Step Hyp Ref Expression
1 weso EWeAEOrA
2 sotr EOrAxAyAzAxEyyEzxEz
3 1 2 sylan EWeAxAyAzAxEyyEzxEz
4 epel xEyxy
5 epel yEzyz
6 4 5 anbi12i xEyyEzxyyz
7 epel xEzxz
8 3 6 7 3imtr3g EWeAxAyAzAxyyzxz