Metamath Proof Explorer


Theorem sotr

Description: A strict order relation is a transitive relation. (Contributed by NM, 21-Jan-1996)

Ref Expression
Assertion sotr ROrABACADABRCCRDBRD

Proof

Step Hyp Ref Expression
1 sopo ROrARPoA
2 potr RPoABACADABRCCRDBRD
3 1 2 sylan ROrABACADABRCCRDBRD