Metamath Proof Explorer


Theorem sotr

Description: A strict order relation is a transitive relation. (Contributed by NM, 21-Jan-1996)

Ref Expression
Assertion sotr
|- ( ( R Or A /\ ( B e. A /\ C e. A /\ D e. A ) ) -> ( ( B R C /\ C R D ) -> B R D ) )

Proof

Step Hyp Ref Expression
1 sopo
 |-  ( R Or A -> R Po A )
2 potr
 |-  ( ( R Po A /\ ( B e. A /\ C e. A /\ D e. A ) ) -> ( ( B R C /\ C R D ) -> B R D ) )
3 1 2 sylan
 |-  ( ( R Or A /\ ( B e. A /\ C e. A /\ D e. A ) ) -> ( ( B R C /\ C R D ) -> B R D ) )