Metamath Proof Explorer


Theorem ordtri1

Description: A trichotomy law for ordinals. (Contributed by NM, 25-Mar-1995) (Proof shortened by Andrew Salmon, 25-Jul-2011)

Ref Expression
Assertion ordtri1 OrdAOrdBAB¬BA

Proof

Step Hyp Ref Expression
1 ordsseleq OrdAOrdBABABA=B
2 ordn2lp OrdA¬ABBA
3 imnan AB¬BA¬ABBA
4 2 3 sylibr OrdAAB¬BA
5 ordirr OrdB¬BB
6 eleq2 A=BBABB
7 6 notbid A=B¬BA¬BB
8 5 7 syl5ibrcom OrdBA=B¬BA
9 4 8 jaao OrdAOrdBABA=B¬BA
10 ordtri3or OrdAOrdBABA=BBA
11 df-3or ABA=BBAABA=BBA
12 10 11 sylib OrdAOrdBABA=BBA
13 12 orcomd OrdAOrdBBAABA=B
14 13 ord OrdAOrdB¬BAABA=B
15 9 14 impbid OrdAOrdBABA=B¬BA
16 1 15 bitrd OrdAOrdBAB¬BA